

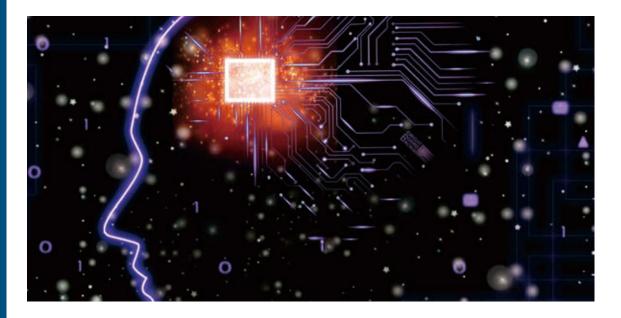
## AUTOMATION FOR SMART MANUFACTURING

OHSAS 18001 ISO 14001

## SHIHLIN AC MOTOR DRIVE SL3/SC3/SS2/SE3/SF3/SA3








## **About Shihlin Electric**

Shihlin Electric & Engineering Corp. established in 1955, has devoted to researching and developing power related products, which cover Automobile Equipment System, Breaker Switchgear & System, Heavy Electric System, and Factory Automation. Our persistent belief of "improving over time" in running the operation and corporate development has not only made us a leader in the domestic market, but also performed splendidly in the overseas market. To make our brand awareness highly recognized, we perform cautious deployments and work hard on overseas marketing and sales.

The setup of overseas branches and factories had compliance with the rapid growth of product demand and to cater to the service of customer worldwide. Shihlin Electric, even with over 60 years of experiences, is still improving itself to better keep up with the globalization. Now, we spare no effort in searching for suitable business partner and expand our brand into global markets. We provide not just the qualified products but also excellent service and professional knowledge.

Now, with to the advance of science and technology, the market demand for electrical product would only grow exponentially. We hold great vision for the coming future. As we are in search of excellence, we do will take part in global competition



## **Core Business Units**

\*Transmission & Distribution Electrical Products
\*Power Control, Switches & Breakers
\*Factory Automation Products
\*Automotive Electrical Component Products

## **Table of Contents**

0

| <b>SL3 series</b><br>Mini AC Drive with Vector Control             | 01 |
|--------------------------------------------------------------------|----|
| SC3series<br>Compact AC Drive with Vector Control                  | 07 |
| <b>SS2 series</b><br>General Vector Control AC Drive               | 15 |
| <b>SE3 series</b><br>High Speed Closed Loop/Communication AC Drive | 23 |
| SF3 series<br>Communication Vector Control AC Drive                | 33 |
| SA3 series<br>Advanced Closed Loop Communication AC Drive          | 43 |
| <b>Optional Accessory</b><br>Accessories and Optional Equipment    | 55 |



Vector Control



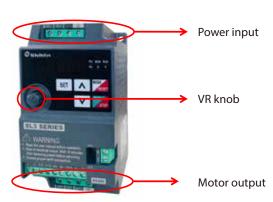


## **Product Range**

| Mode | el  | kW (HP) | 0.4<br>(0.5) | 0.75<br>(1) | 1.5<br>(2) | 2.2<br>(3) |
|------|-----|---------|--------------|-------------|------------|------------|
| 61.2 | 021 | 1Ø 220V |              |             |            |            |
| SL3  | 043 | 3Ø 440V |              |             |            |            |

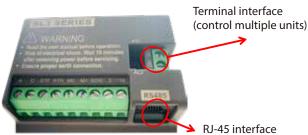
## Product Feature

### Save space, easier installation


Mini design, the size is smaller than all previous models. Choose between din rail installation and screw installation, save installation space effectively.



## **Intuitive Layout And Simple Operation**

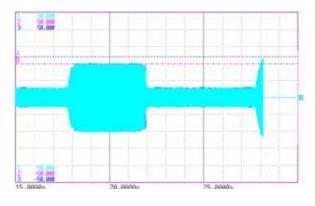

Power input on top and motor output at bottom, reduce the chance of wrong wiring.

Built-in keypad with VR knob, easy to adjust frequency.



## **Dual Communication Interface**

With two types of RS485 interface, users can easily control multiple units through communication.





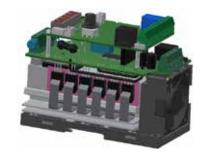

Supports exterior keypad: DU06, DU08S, PU301, PU302 \*Note:RS485 and keypad will not work simultaneously.

## More than enough overload protection

Over current protection level (OC) 260%; Over current limit level (LT) 220%, provides stronger driving ability and longer lifetime.



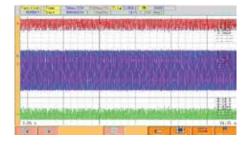
# SL3 series

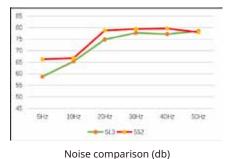

## Environmental Resistance Improve

#### **Optimized air channel**

Reduce the dust that goes inside, increase the lifetime of SL3 inverter.




Add isolation (thermal conductive) silicon film in Frame A to increase creepage distance.




## Added structure to improve air channel.

#### Lower motor noise

Low noise carrier frequency control(Soft-PWM) can turn motor's metallic noise into a more pleasing buzz. SL3 is embeded with improved algorithm to further lower motor noise.





Compared with previous products, the noise is substantially lower at low speed.

#### Lower false alarm chance

With better current stall prevention function, the current can be regulated much faster which lowers the chance of triggering alarm.

#### Other specialized feature

- Built-in Modbus communication, Baud rate up to 38400bps.
- Built-in PID controller for constant pressure and constant temperature applications.
- Alarm record: 12 sets of records with 2 detailed record, check the operating status with full detail.
- Regeneration avoid function: monitor DC bus voltage in real-time and suppress DC bus voltage when it increase abnormally, prevents over voltage alarm.
- Automatic carrier frequency adjustment, prevent IGBT overheat(NTC) alarm.
- Built-in RFI filter for all range, suppress electric interference effectively.
- Free communication software SL-INVConfigurator, for testing, monitoring, upload and save parameters and much more.



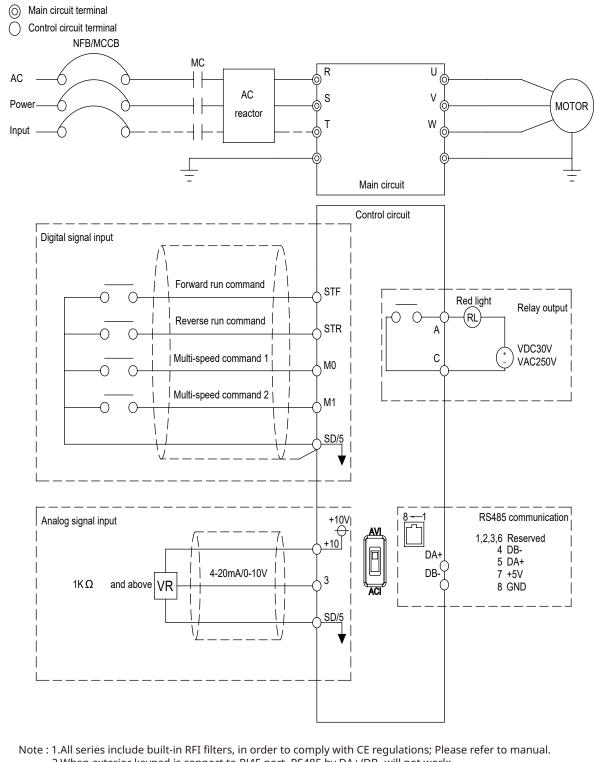
## Electric Specification

## 220V series single phase

|                 | Frame                              |                                                                |                  | В               |     |  |  |  |  |
|-----------------|------------------------------------|----------------------------------------------------------------|------------------|-----------------|-----|--|--|--|--|
|                 | Model SL3-021- 🗌 🗌 K- 🔲            | 0.4                                                            | 0.75             | 1.5             | 2.2 |  |  |  |  |
| In              | Rated output capacity (kVA)        | 1                                                              | 1.5              | 2.5             | 4.2 |  |  |  |  |
| <pre></pre>     | Rated output current (A)           | 2.7                                                            | 4.5              | 8               | 11  |  |  |  |  |
| verter          | Applicable motor capacity (HP)     | 0.5                                                            | 1                | 2               | 3   |  |  |  |  |
|                 | Applicable motor capacity (kW)     | 0.4                                                            | 0.75             | 1.5             | 2.2 |  |  |  |  |
| Output          | Overload current rating            | 150% 60 seconds, 200% 1 seconds (inverse-time characteristics) |                  |                 |     |  |  |  |  |
| t p             | Carrier frequency (kHz)            | 1~15kHz                                                        |                  |                 |     |  |  |  |  |
| F               | Maximum output voltage             | 3 phase 200-240V                                               |                  |                 |     |  |  |  |  |
|                 | Rated input current (A) *Note 1    | 6.5                                                            | 9.3              | 15.7            | 24  |  |  |  |  |
| SC PC           | Rated input AC voltage/ frequency  |                                                                | single phase 200 | -240V 50Hz/60Hz |     |  |  |  |  |
| Power<br>supply | Permissible AC voltage fluctuation |                                                                | single phase 170 | -264V 50Hz/60Hz |     |  |  |  |  |
| j, er           | Permissible frequency fluctuation  |                                                                | ±5               | i%              |     |  |  |  |  |
|                 | Power supply capacity (kVA)        | 1.5                                                            | 2.5              | 3.5             | 6.4 |  |  |  |  |
|                 | Cooling method                     | Fan cooling                                                    |                  |                 |     |  |  |  |  |
|                 | Weight (kg)                        | 0.6                                                            | 0.6              | 0.6             | 0.8 |  |  |  |  |

## 440V series three-phase

|                 | Frame                              |                                                                | [              | 3             |      |  |  |  |  |
|-----------------|------------------------------------|----------------------------------------------------------------|----------------|---------------|------|--|--|--|--|
|                 | Model SL3-043 - 🗌 🗌 K- 🔲           | 0.4                                                            | 0.75           | 1.5           | 2.2  |  |  |  |  |
| In              | Rated output capacity (kVA)        | 1                                                              | 2              | 3             | 4.6  |  |  |  |  |
| e e             | Rated output current (A)           | 1.5                                                            | 2.6            | 4.2           | 6    |  |  |  |  |
| rter            | Applicable motor capacity (HP)     | 0.5                                                            | 1              | 2             | 3    |  |  |  |  |
|                 | Applicable motor capacity (kW)     | 0.4                                                            | 0.75           | 1.5           | 2.2  |  |  |  |  |
| Output          | Overload current rating            | 150% 60 seconds, 200% 1 seconds (inverse-time characteristics) |                |               |      |  |  |  |  |
| l t             | Carrier frequency (kHz)            | 1~15kHz                                                        |                |               |      |  |  |  |  |
| L F             | Maximum output voltage             | 3 phase 380-480V                                               |                |               |      |  |  |  |  |
|                 | Rated input current (A) *Note 1    | 1.8                                                            | 3.2            | 4.3           | 7.1  |  |  |  |  |
| S P             | Rated input AC voltage/ frequency  |                                                                | 3 phase 380-48 | 30V 50Hz/60Hz |      |  |  |  |  |
| Power<br>supply | Permissible AC voltage fluctuation |                                                                | 3 phase 323-52 | 28V 50Hz/60Hz |      |  |  |  |  |
| ly er           | Permissible frequency fluctuation  |                                                                | ±5             | 5%            |      |  |  |  |  |
|                 | Power supply capacity (kVA)        | 1.5                                                            | 2.5            | 4.5           | 6.9  |  |  |  |  |
|                 | Cooling method                     | Fan cooling                                                    |                |               |      |  |  |  |  |
|                 | Weight (kg)                        | 0.8                                                            | 0.8            | 0.85          | 0.85 |  |  |  |  |

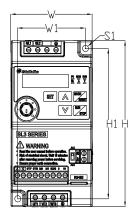

## Common Specification

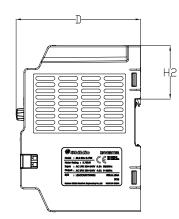
|                   | Control method                     | V/F control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|-------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Out               | put frequency range                | 0.00~599.00Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Frequency setting | Digital setting                    | 0.01Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| resolution        | Analog setting                     | Maximum output frequency±0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Output frequency  | Digital setting                    | Maximum target frequency±0.01%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| accuracy          | Analog setting                     | Maximum target frequency±0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                   | Starting torque                    | 150% / 5Hz automatic torque boost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ١                 | V/F characteristics                | Constant torque curve, variable torque curve, five-point VF curve                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Acceleration / o  | deceleration curve characteristics | Linear acceleration /deceleration curve, S shape acceleration/deceleration curve 1 & 2 & 3                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                   | Drive motor type                   | Induction motor (IM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                   | Stalling protection                | The stalling protection level can be set to 0~200%                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Tar               | get frequency setting              | Up down button, VR knob setting, DC 0~5V/10V signal, DC 4~20 mAsignal, multi-speed stage level setting, communication setting, PWM pulse setting.                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Keypad            | Operation monitoring               | Output frequency, output current, output voltage, electronic thermalaccumulation rate, temperature rising accumulation rate, output power,analog input signal value, digital input output terminal status; alarm history 12 sets with operation details of the latest two sets                                                                                                                                                                                                                                   |  |  |  |  |  |
|                   | LED indicator (6)                  | Frequency monitoring indicator, voltage monitoring indicator, currentmonitoring indicator, motor running indicator, mode switch indicator, PU mode indicator                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Cor               | nmunication function               | RS-485 communication, choose between Shihlin/Modbuscommunication protocol                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Protection        | mechanism / alarm function         | Output short circuit protection, over-current protection, over-voltageprotection,<br>under-voltage protection, motor over-heat protection, IGBTmodule over-heat protection,<br>communication error protection, PID errorprotection, memory error protection, CPU error<br>protection, stallprevention, module over-heat protection, input power fail protection,<br>terminal 3-5 disconnect protection, over torque protection, Currentleakage to ground<br>protection, hardware detect circuit error protection |  |  |  |  |  |
|                   | Ambient temperature                | -10 ~ +40°C (non-freezing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                   | Ambient humidity                   | Below 90%Rh (non-condensing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                   | Storage temperature                | -20 ~ +65°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                   | Surrounding environment            | Indoor, no corrosive gas, no flammable gas, no flammable powder.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Environment       | Altitude                           | Altitude below 2000 meters, when altitude is above 1,000m, derate the rated current 2% per 100m                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                   | Vibration                          | Vibration below 5.9m/s <sup>2</sup> (0.6G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                   | Grade of protection                | IP20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                   | Over voltage level                 | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                   | Degree of environmental pollution  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                   | Class of protection                | Class I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Inte              | ernational certification           | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |

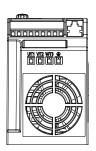
# SL3 series

Mini AC Drive with Vector Control

## Wiring Diagram

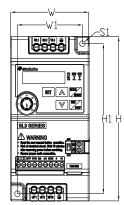


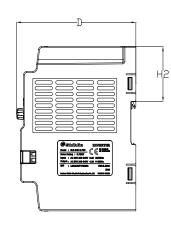


When exterior keypad is connect to RJ45 port, RS485 by DA+/DB- will not work;
 When switching terminal 3-5 voltage/ current input, please check the ACI/AVI switch position, and check parameter 02-20 (P.17) setting.

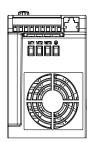



## Appearance and dimensions

Frame A




| Model         | W  | W1 | Н   | H1  | H2   | D   | S1              |
|---------------|----|----|-----|-----|------|-----|-----------------|
| SL3-021-0.4K  |    |    |     |     |      |     | 5               |
| SL3-021-0.75K | 68 | 56 | 132 | 120 | 42.5 | 104 | (tighten torque |
| SL3-021-1.5K  | 1  |    |     |     |      |     | 20~25kgf.cm)    |

## Frame B







| Model         | WW | 1H   |     | H1    | H2   | DS  | 1               |
|---------------|----|------|-----|-------|------|-----|-----------------|
| SL3-021-2.2K  |    |      |     |       |      |     |                 |
| SL3-043-0.4 K |    |      |     |       |      |     | E               |
| SL3-043-0.75K | 72 | 59.5 | 142 | 129.5 | 42.5 | 110 | (tighten torque |
| SL3-043-1.5K  |    |      |     |       |      |     | 20~25kgf.cm)    |
| SL3-043-2.2 K |    |      |     |       |      |     |                 |



Compact Inverter with Vector Control





## Product Range

| Мо  | del | kW<br>(HP)   | 0.2<br>(0.25) | 0.75<br>(1) | 1.5<br>(2) | 2.2<br>(3) | 3.7<br>(5) |          | 11<br>(15) | 15<br>(20) | 18.5<br>(25) | 22<br>(30)   |
|-----|-----|--------------|---------------|-------------|------------|------------|------------|----------|------------|------------|--------------|--------------|
|     | 021 | 1 phase 220V |               |             |            |            |            |          |            |            |              |              |
| SC3 | 023 | 3 phase 220V |               |             |            |            |            |          |            |            |              |              |
| 363 | 043 | 3 phase 440V |               |             |            |            |            | <u> </u> |            |            |              |              |
|     | 045 | 5 phase 4400 |               |             |            |            |            |          |            |            |              | $\mathbf{i}$ |

## Main Features

- \* High performance vector control
- \* Built-in operation wheel
- \* Full PCB coating and isolated air duct
- \* Dual RS485 communication interface
- \* Built-in PID controller
- \* Built-in RFI filter
- \* Built-in Modbus communication(up to 115200bps)
- \* Drive PM motor(Customized model)
- \* Built-in proportion linkage function
- \* Built-in 8 sets of programmed operation function
- \* Built-in 5 point V/F curve
- \* Built-in multi-function monitoring
- \* Built-in energy saving algorithm
- \* Built-in low current/overtorque detection

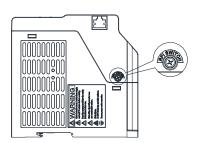
#### \* Cooling fan auto on/off in different temperature

- \* 12 sets of alarm record, with detailed information of the latest 2 alarm (with frequency / current / voltage / temperature rising rate /DC bus voltage /operation time record)
- \* Din rail installation
- \* External keypad
- \* Output frequency up to 599Hz
- \* Output short circuit function

## Model Identification

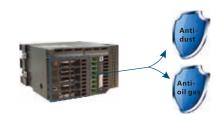
| SC3        | SC3 043                                                                     |          | XY                                                                          |
|------------|-----------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------|
| Series     | Voltage level                                                               | Capacity | Version                                                                     |
| SC3 series | 043 : three phase 440V<br>023 : three phase 220V<br>021 : single phase 220V | 0.75kW   | None:General model<br>-xy:Customized or specialized or region<br>difference |




## SC3 series

#### Compact Inverter with Vector Control

## **Product Features**


#### **Built-in RFI filer**

• A screw switch to turn on/off RFI filter, reduce electromagnetic interference.



## **Coating & Isolated Air Duct**

- All PCB is coated with insulation material.
- Heat sink is separated and isolated from the PCB, prevent dust/oil from contacting electronic components.



Note: Please do not install the inverter in a heavily polluted environment without any protection.

#### **Easy Maintenance**

- Fan is removable.
- The fan is designed on the top to effectively reduce the impact of falling dust, and the terminal wiring will not affect the maintenance of the fan.



### **Grouping Parameters - Easy Setup**

| Group | Parameter<br>Number | Name                         | Setting Range                                |  |  |
|-------|---------------------|------------------------------|----------------------------------------------|--|--|
| 01-00 | P.1                 | Maximum frequency            | $0.00 \sim 01\text{-}02$ (P.18) Hz           |  |  |
| 01-01 | P.2                 | Minimum frequency            | 0~120.00Hz                                   |  |  |
| 01-02 | P.18                | High-speed maximum frequency | 01-00 (P.1) ~599.00Hz                        |  |  |
| 01-03 | P.3                 | Base frequency               | 50Hz system setting: 0 $\sim$ 599.00Hz       |  |  |
| 01-05 | P.5                 | base frequency               | 60Hz system setting: 0 $\sim$ 599.00Hz       |  |  |
|       |                     |                              | 0~1000.0V                                    |  |  |
| 01-04 | P.19                | Base voltage                 | 99999: Change according to the input voltage |  |  |

SC3 series: Similar functions are grouped into same sectors instead of sequence numbers.

Note: Please refer to manual for installation details.

#### **Dual RS485 interface**

- Screw terminal for easy connection with multiple machines.
- RJ45 for easy connection with external keypad.



Note: External keypad and RS485 cannot work at the same time.

### **Optimized Operation Wheel Design**

• The position of the operation wheel is lower than the front cover, avoiding all external force from damaging the wheel.





## Electrical Specifications

### 220V Series single-phase

|              | Frame                                   |                                                              | А         | В                 |            |     |  |  |  |  |
|--------------|-----------------------------------------|--------------------------------------------------------------|-----------|-------------------|------------|-----|--|--|--|--|
|              | Model SC3-021- 🗌 🗌 K-xy                 | 0.2                                                          | 0.4       | 0.75              | 1.5        | 2.2 |  |  |  |  |
|              | Rated output capacity (kVA)             | 0.6                                                          | 1         | 1.5               | 2.5        | 4.2 |  |  |  |  |
|              | Rated output current (A)                | 1.8                                                          | 2.7       | 4.5               | 8          | 11  |  |  |  |  |
|              | Applicable motor capacity (HP)          | 0.25                                                         | 0.5       | 1                 | 2          | 3   |  |  |  |  |
| Output       | Applicable motor capacity (kW)          | 0.2                                                          | 0.4       | 0.75              | 1.5        | 2.2 |  |  |  |  |
| ft           | Overload current rating                 | 150% 60 seconds 200% 1 second (inverse time characteristics) |           |                   |            |     |  |  |  |  |
|              | Carrier frequency (kHz)                 | 1~15kHz                                                      |           |                   |            |     |  |  |  |  |
|              | Maximum output voltage                  | Three-phase 200-240V                                         |           |                   |            |     |  |  |  |  |
|              | Rated power voltage                     |                                                              | Single-pl | nase 200-240V 50I | Hz / 60Hz  |     |  |  |  |  |
| Power supply | Power voltage permissible fluctuation   |                                                              | Single-pl | nase 170-264V 50I | Hz / 60Hz  |     |  |  |  |  |
| er si        | Power frequency permissible fluctuation |                                                              |           | ±5%               |            |     |  |  |  |  |
| lddr         | Power source capacity (kVA)             | 0.75                                                         | 1.5       | 2.5               | 3.5        | 6.4 |  |  |  |  |
| $\leq$       | Rated input current(A) (Note1)          | 5.4                                                          | 6.5       | 9.3               | 15.7       | 24  |  |  |  |  |
|              | Cooling method                          | Self cooling                                                 |           | Forced ai         | ir cooling |     |  |  |  |  |
|              | Weight (kg)                             | 0.66                                                         | 0.6       | 0.73              | 1.38       | 1.4 |  |  |  |  |

## 220V Series three-phase

|              | Frame                                   |                                                              | A    |                |                  |      | В    |  |  |  |
|--------------|-----------------------------------------|--------------------------------------------------------------|------|----------------|------------------|------|------|--|--|--|
|              | Model SC3-023 - 🗌 🗌 🗌 K-xy              | 0.2                                                          | 0.4  | 0.75           | 1.5              | 2.2  | 3.7  |  |  |  |
|              | Rated output capacity (kVA)             | 0.6                                                          | 1.2  | 2              | 3.2              | 4.2  | 6.7  |  |  |  |
|              | Rated output current (A)                | 1.8                                                          | 3    | 5              | 8                | 11   | 17.5 |  |  |  |
|              | Applicable motor capacity (HP)          | 0.25                                                         | 0.5  | 1              | 2                | 3    | 5    |  |  |  |
| Output       | Applicable motor capacity (kW)          | 0.2                                                          | 0.4  | 0.75           | 1.5              | 2.2  | 3.7  |  |  |  |
| Lt           | Overload current rating                 | 150% 60 seconds 200% 1 second (inverse time characteristics) |      |                |                  |      |      |  |  |  |
|              | Carrier frequency (kHz)                 | 1~15kHz                                                      |      |                |                  |      |      |  |  |  |
|              | Maximum output voltage                  | Three-phase 200-240V                                         |      |                |                  |      |      |  |  |  |
|              | Rated power voltage                     |                                                              | Thi  | ree-phase 200- | 240V 50Hz / 60   | )Hz  |      |  |  |  |
| Pow          | Power voltage permissible fluctuation   |                                                              | Thi  | ree-phase 170- | 264V 50Hz / 60   | )Hz  |      |  |  |  |
| er si        | Power frequency permissible fluctuation |                                                              |      | ±!             | 5%               |      |      |  |  |  |
| Power supply | Power source capacity (kVA)             | 0.75                                                         | 1.5  | 2.5            | 4.5              | 6.4  | 10   |  |  |  |
|              | Rated input current(A) (Note1)          | 2.1                                                          | 3.2  | 5.6            | 9.3              | 15   | 20.6 |  |  |  |
|              | Cooling method                          | Self cooling                                                 |      | Fo             | orced air coolir | ng   |      |  |  |  |
|              | Weight (kg)                             | 0.69                                                         | 0.69 | 0.70           | 0.73             | 1.32 | 1.4  |  |  |  |

Note 1 : The value of rated input current is not only affected by the power transformer, input reactor and wiring conditions but also fluctuates with the impedance on the power side.

# SC3 series

Compact Inverter with Vector Control

## Electrical Specifications

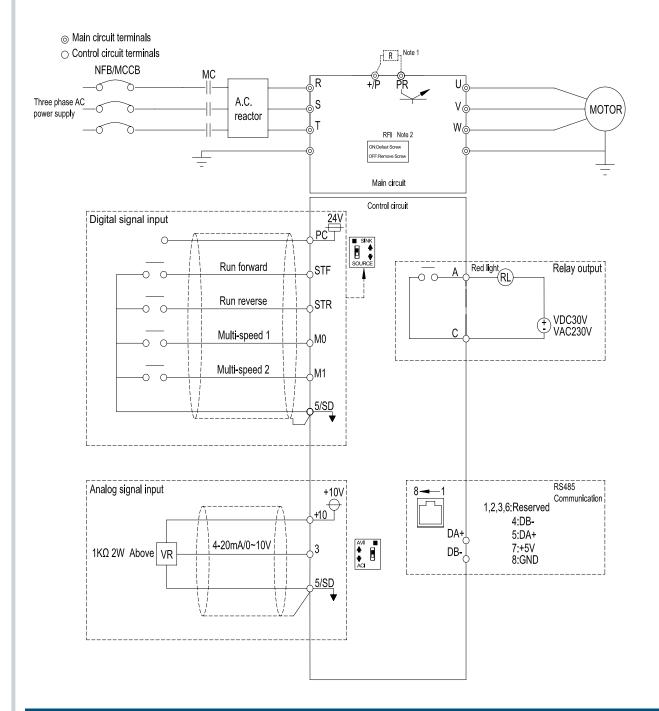
### 440V Series three-phase

|              | Frame                                   | A                                                            |      |      | В                |      |      |  |  |
|--------------|-----------------------------------------|--------------------------------------------------------------|------|------|------------------|------|------|--|--|
|              | Model SC3-043- 🗌 🗌 K-xy                 | 0.4                                                          | 0.75 | 1.5  | 2.2              | 3.7  | 5.5  |  |  |
|              | Rated output capacity (kVA)             | 1                                                            | 2    | 3    | 4.6              | 6.9  | 9.2  |  |  |
|              | Rated output current (A)                | 1.5                                                          | 2.6  | 4.2  | 6                | 9    | 12   |  |  |
| 0            | Applicable motor capacity (HP)          | 0.5                                                          | 1    | 2    | 3                | 5    | 7.5  |  |  |
| Output       | Applicable motor capacity (kW)          | 0.4                                                          | 0.75 | 1.5  | 2.2              | 3.7  | 5.5  |  |  |
| l t          | Overload current rating                 | 150% 60 seconds 200% 1 second (inverse time characteristics) |      |      |                  |      |      |  |  |
|              | Carrier frequency (kHz)                 | 1~15kHz                                                      |      |      |                  |      |      |  |  |
|              | Maximum output voltage                  | Three-phase 380-480V                                         |      |      |                  |      |      |  |  |
| _            | Rated power voltage                     | Three-phase 380-480V 50Hz / 60Hz                             |      |      |                  |      |      |  |  |
| MOG          | Power voltage permissible fluctuation   | Three-phase 323-528V 50Hz / 60Hz                             |      |      |                  |      |      |  |  |
| er si        | Power frequency permissible fluctuation | ±5%                                                          |      |      |                  |      |      |  |  |
| Power supply | Power source capacity (kVA)             | 1.5                                                          | 2.5  | 4.5  | 6.9              | 10.4 | 11.5 |  |  |
|              | Rated input current(A) (Note1)          | 1.8                                                          | 3.2  | 4.3  | 7.1              | 10   | 14   |  |  |
|              | Cooling method                          | Self cooling                                                 |      | Fc   | orced air coolin | ng   |      |  |  |
|              | Weight (kg)                             | 0.74                                                         | 0.74 | 0.81 | 1.37             | 1.37 | 1.42 |  |  |

|              |     | Frame                                |            | (                                              | 2                                |                   | D        |      |  |  |  |
|--------------|-----|--------------------------------------|------------|------------------------------------------------|----------------------------------|-------------------|----------|------|--|--|--|
|              | M   | odel SC3-043- 🗌 K 🗌 KF-              | -xy        | 7.5/11                                         | 11/15                            | 15/18.5           | 18.5/22  | 22   |  |  |  |
|              |     | Rated output capacity (kVA)          |            | 14                                             | 18                               | 25                | 29       | 34   |  |  |  |
|              |     | Rated output current (A)             |            | 18                                             | 24                               | 32                | 38       | 45   |  |  |  |
|              | HD  | Applicable motor capa                | city (HP)  | 10                                             | 15                               | 20                | 25       | 30   |  |  |  |
|              |     | Applicable motor capa                | city(kW)   | 7.5                                            | 11                               | 15                | 18.5     | 22   |  |  |  |
|              |     | Overload current ratin               | g          |                                                | 150% 60 seconds (inver           | rse time characte | ristics) |      |  |  |  |
| 0            |     | Carrier frequency (kHz               | )          |                                                | 1~15                             | 5kHz              |          |      |  |  |  |
| Output       |     | Rated output capacity                | (kVA)      | 84                                             | 25                               | 29                | 34       | 46   |  |  |  |
| lt           |     | Rated output current                 | (A)        | 24                                             | 32                               | 38                | 45       | 49   |  |  |  |
|              | ND  | Applicable motor capacity (HP) 15 20 | 20         | 25                                             | 30                               | 30                |          |      |  |  |  |
|              |     | Applicable motor capa                | city (kW)  | 11                                             | 15                               | 18.5              | 22       | 22   |  |  |  |
|              |     | Overload current rating              |            | 120% 60 seconds (inverse time characteristics) |                                  |                   |          |      |  |  |  |
|              |     | Carrier frequency (kHz               | )          | 1~15                                           | 5kHz                             | 1~10kHz           |          |      |  |  |  |
|              | Ma  | ximum output voltage                 |            | Three-phase 380-480V                           |                                  |                   |          |      |  |  |  |
|              | Rat | ed power voltage                     |            | Three-phase 380-480V 50Hz / 60Hz               |                                  |                   |          |      |  |  |  |
| P            | Pov | ver voltage permissible flu          | uctuation  |                                                | Three-phase 342-528V 50Hz / 60Hz |                   |          |      |  |  |  |
| owe          | Pov | ver frequency permissible f          | luctuation |                                                | ±!                               | 5%                |          |      |  |  |  |
| Power supply | Pov | wer source capacity (kVA             | ()         | 16                                             | 20                               | 27                | 32       | 41   |  |  |  |
| ylqc         | Rat | ted input current (A)                | HD         | 20                                             | 26                               | 35                | 40       | 47   |  |  |  |
|              |     | ote1)                                | ND         | 26                                             | 35                               | 40                | 47       | 54   |  |  |  |
|              | Cod | oling method                         |            |                                                | Forced a                         | ir cooling        |          |      |  |  |  |
|              | We  | ight(kg)                             |            | 2.07                                           | 2.15                             | 3.45              | 3.57     | 3.70 |  |  |  |

Note 1 : The value of rated input current is not only affected by the power transformer, input reactor and wiring conditions but also fluctuates with the impedance on the power side.




## Common Specifications

| Control metho            | bd                                 | SVPWM, V/F control, General flux vector control                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output freque            | ency range                         | 0~599.00Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Frequency setting        | Digital setting                    | Within 100Hz, the resolution is 0.01Hz<br>Above 100Hz, the resolution is 0.1Hz.                                                                                                                                                                                                                                                                                                                                                                                            |
| resolution               | Analog setting                     | DC 0~5V or 4~20mA signal: 11 bit,<br>DC 0~10V signal: 12 bit.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Output<br>frequency      | Digital setting                    | Maximum target frequency±0.01%.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| accuracy                 | Analog setting                     | Maximum target frequency±0.1%.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Starting torqu           | le                                 | Under General flux vector control: 180% 3Hz, 200% 5Hz                                                                                                                                                                                                                                                                                                                                                                                                                      |
| V/F characteri           | stics                              | Constant torque curve, variable torque curve, five-point VF curve                                                                                                                                                                                                                                                                                                                                                                                                          |
| Acceleration /           | deceleration curve characteristics | Linear acceleration / deceleration curve, S shape acceleration /deceleration curve 1 & 2 & 3 $$                                                                                                                                                                                                                                                                                                                                                                            |
| Drive motor              |                                    | Induction motor (IM)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stalling protee          | ction                              | The stalling protection level can be set from 0~250%. Default value 150%                                                                                                                                                                                                                                                                                                                                                                                                   |
| Target frequency setting |                                    | Built-in keypad setting, DC 0~5V/0~10V signal, DC 4~20 mA signal, multi-speed stage level setting, communication setting.                                                                                                                                                                                                                                                                                                                                                  |
| Keypad                   | Operation monitoring               | Output frequency, output current, output voltage, PN voltage, electronic thermal accumulation rate, temperature rising accumulation rate, output power, analog input signal value, external terminal status…; alarm history 12 sets with operation details of the latest two set.                                                                                                                                                                                          |
|                          | LED indicator(6)                   | Frequency monitoring indicator, voltage monitoring indicator, current monitoring indicator, motor running indicator, mode switch indicator, PU mode indicator.                                                                                                                                                                                                                                                                                                             |
| Communicatio             | on function                        | RS485 communication, choose between Shihlin / Modbus communication protocol, baud rate up to 115200bps.                                                                                                                                                                                                                                                                                                                                                                    |
| Protection me            | chanism / alarm function           | Output short circuit protection, over-current protection, over-voltage protection, under-voltage protection, motor over-heat protection (06-00(P.9)), IGBT module over-heat protection, communication error protection, PID error protection, memory error protection, CPU error protection, stall prevention, module over-heat protection, input power fail protection, terminal 3-5 disconnect protection, over torque protection, current leakage to ground protection. |
|                          | Ambient temperature                | -10 ~ +50°C (non-freezing), side by side installation-10~ +40°C (non-freezing).                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | Ambient humidity                   | Below 90%Rh (non-condensing).                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | Storage temperature                | -20 ~ +65°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | Surrounding environment            | Indoor, no corrosive gas, no flammable gas, no flammable dust.                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | Altitude                           | Altitude below 2000 m, when altitude is above 1000 m, derate the rated current 2% per 100 m                                                                                                                                                                                                                                                                                                                                                                                |
| Environment              | Vibration                          | Vibration below 5.9m/s²(0.6G)                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | Grade of protection                | IP20                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | Over voltage level                 | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | Degree of environmental pollution  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | Class of protection                | Class I                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| International            | certification                      | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

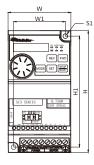
# SC3 series

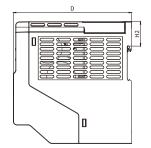
Compact Inverter with Vector Control

## Wiring Diagram



## NOTE

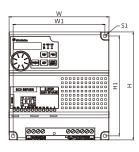

1.There is no +/P and PR terminal in frame A (SC3-043-0.4K~1.5K, SC3-023-0.2K~1.5K, SC3-021-0.2K~0.75K.)

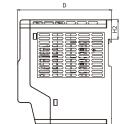

2.All series have built-in RFI filter to suppress electromagnetic interference. In order to comply with CE regulations, please refer to relevant instructions in the manual for installation.



## Dimensions

#### Frame A




| Frame A       |           |            |           |            |            |           |                      |
|---------------|-----------|------------|-----------|------------|------------|-----------|----------------------|
|               |           |            |           |            |            |           |                      |
| Model type    | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | H2<br>(mm) | D<br>(mm) | S1<br>(mm)           |
| SC3-021-0.2K  |           |            |           |            |            |           |                      |
| SC3-021-0.4K  |           |            |           |            |            |           |                      |
| SC3-021-0.75K |           |            |           |            |            |           |                      |
| SC3-023-0.2K  | 1         |            |           |            |            |           | 5                    |
| SC3-023-0.4K  | 68        | 56         | 132       | 120        | ЭС Г       | 26.5 128  | Tightening           |
| SC3-023-0.75K | 68        | 50         | 132       | 120        | 20.5       | 128       | torque:<br>20~25kgf. |
| SC3-023-1.5K  | ]         |            |           |            |            |           | cm                   |
| SC3-043-0.4K  | ]         |            |           |            |            |           |                      |
| SC3-043-0.75K |           |            |           |            |            |           |                      |
| SC3-043-1.5K  | ]         |            |           |            |            |           |                      |

## 

#### Frame B/C/D





| E |  | Π |  |  |  |  |  |  |  |  |
|---|--|---|--|--|--|--|--|--|--|--|
| 9 |  | 9 |  |  |  |  |  |  |  |  |
| Ĩ |  | p |  |  |  |  |  |  |  |  |
|   |  | h |  |  |  |  |  |  |  |  |
| Щ |  | Ľ |  |  |  |  |  |  |  |  |

## Frame B/C/D

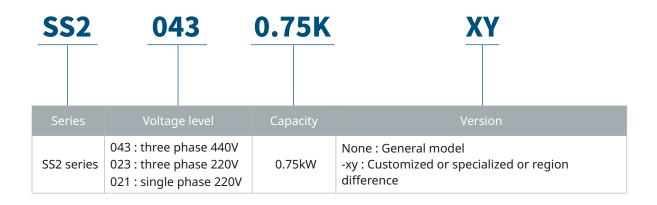
| Model type         | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | H2<br>(mm) | D<br>(mm)                  | S1<br>(mm)                 |
|--------------------|-----------|------------|-----------|------------|------------|----------------------------|----------------------------|
| SC3-021-1.5K       |           |            |           |            |            |                            |                            |
| SC3-021-2.2K       |           |            |           |            | 26.5 128   |                            |                            |
| SC3-023-2.2K       | 136       |            |           |            |            |                            | 5<br>Tightening            |
| SC3-023-3.7K       |           | 125        | 147       | 136        |            | torque:<br>20~25kgf.<br>cm |                            |
| SC3-043-2.2K       |           |            |           |            |            |                            |                            |
| SC3-043-3.7K       |           |            |           |            |            |                            |                            |
| SC3-043-5.5K       |           |            |           |            |            |                            |                            |
| SC3-043-7.5K/11KF  | 132       | 115.6      | 215       | 198.6      |            | 150                        | 6.2<br>Tightening          |
| SC3-043-11K/15KF   | 152       | 115.0      | 215       | 198.0      | -          | 150                        | Torque:<br>20~25kgf.<br>cm |
| SC3-043-15K/18.5KF |           |            |           |            |            |                            | 6.2                        |
| SC3-043-18.5K/22KF | 175       | 158.6      | 260       | 243.6      | -          | 180                        | Tightening<br>Torque:      |
| SC3-043-22K        |           |            |           |            |            |                            | 20~25kgf.<br>cm            |

#### Unit : mm







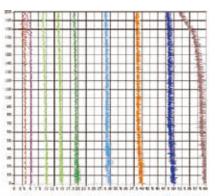

## Product Range

| Mode | el  | kW<br>(HP)   | 0.4<br>(0.5) | 0.75<br>(1) | 1.5<br>(2) | 2.2<br>(3) | 3.7<br>(5) | 5.5<br>(7.5) |
|------|-----|--------------|--------------|-------------|------------|------------|------------|--------------|
|      | 021 | 1 phase 220V |              |             |            |            |            |              |
| SS2  | 023 | 3 phase 220V |              |             |            |            |            |              |
|      | 043 | 3 phase 440V |              |             |            |            |            |              |

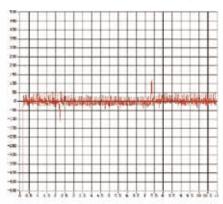
## Main Features

- \* Built-in shuttle knob to adjust output frequency and set parameters easily
- \* Built-in RS485 communication interface
- \* Support MODBUS and Shihlin communication protocol
- \* Built-in proportion linkage control function to support multi inverters connection
- \* Maximum 599Hz frequency output
- \* Support DIN rail mount
- \* The resolution of frequency setting: digital 0.01Hz ; analog 1/1000
- \* The accuracy of output frequency: 0.01%
- \* Multi-function input/output terminals
- \* Support 2 analog setting types: 0-10V and 4-20mA

## Model Identification





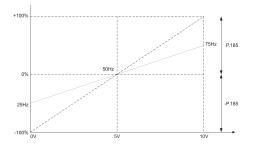


## **Product Features**

#### **General Flux Vector Control Technique**

- General flux vector control technique.
- A 32-bit RISC CPU for high-speed computation.
- Starting torque, 150%3Hz.



• Speed accuracy is within 1% (0%~100% loading changes).

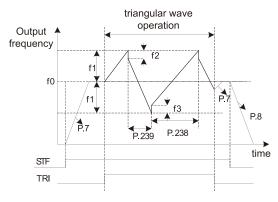



- Motor parameter auto-tuning function.
- Stalling protection level reaches to 250%.

### **High Performance And Function**

- The maximum output frequency up to 599Hz.
- Soft-PWM functions for eliminating motor noises and preventing the temperature of IGBT module too high.
- Built-in energy-saving control function, inverter will control the output voltage automatically in order to reduce the output power losses when inverter is running.
- Cooling fan operation method is selectable.

### **Built-in Proportion Linkage Function**




### **PID Feedback Control Function**



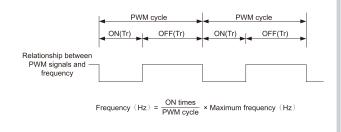
#### **Triangular Wave Function (traverse)**

• This is suitable for operations that need traversing and winding movements such as textile operations.



- f0 : Setting value of frequency
- f1 : Generated amplitude for setting frequency (f0 X P.235 )
- f2 : Compensation from acceleration to deceleration (f1 X P.236)
- f3 : Compensation from deceleration to acceleration (f1 X P.237)

### **Built-in Frequency And Parameter Setting Knob**

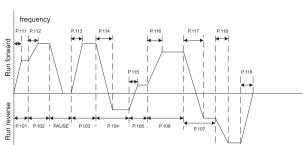





## **Product Features**

#### **PWM Control Function**

- The operating frequency can be controlled with the PWM signals output from PLC.
- The terminal M2 can be set as PWM signal input.

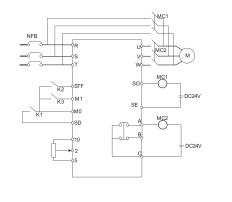



## **Easy To Install Design**

• Din rail design for multiple inverters side by side installation.



- Built-in standard RJ45 port for RS485 communication.
- · Screwless terminal blocks designed




**Programmed Operation Mode With Manual Operation** 

#### Equipped With Grid Power Frequency Switching Mechanism

P.10

- It provides automatic switch between the grid power and frequency conversion.
- If the motor is running at rated frequency, using grid power frequency has a much better efficiency.





• The cooling fan is removable and easy to clean.



## Electric Specifications

## 220V Series Single-Phase

|        | Model <b>SS2-021-</b> [         | ]ПП <b>К</b>       | 0.4K                                                          | 0.75K             | 1.5K               | 2.2K |  |  |
|--------|---------------------------------|--------------------|---------------------------------------------------------------|-------------------|--------------------|------|--|--|
| A      | Applicable Motor Capacity HP kW |                    | 0.5                                                           | 1                 | 2                  | 3    |  |  |
| Abb    |                                 |                    | 0.4                                                           | 0.75              | 1.5                | 2.2  |  |  |
|        | Rated output capacity k         | VA (Note)          | 0.95                                                          | 1.5               | 2.5                | 4.2  |  |  |
| Out    | Rated output current A          | (Note)             | 2.7                                                           | 4.5               | 8                  | 11   |  |  |
| Output | Overload current rating         |                    | 150% 60 seconds; 200% 1 second (inverse time characteristics) |                   |                    |      |  |  |
|        | Maximum output voltag           | ge                 | 3 Phase 200~240V AC                                           |                   |                    |      |  |  |
| Power  | Rated power voltage             |                    | Single phase 200~240V 50Hz/ 60Hz                              |                   |                    |      |  |  |
|        | Power voltage permissi          | ble fluctuation    |                                                               | Single phase 170~ | 264V 50Hz / 60Hz   |      |  |  |
| supply | Power frequency permi           | ssible fluctuation |                                                               | ±!                | 5%                 |      |  |  |
| ply    | Power source capacity l         | «VA                | 1.5                                                           | 2.5               | 3.5                | 6.4  |  |  |
|        | Cooling Method                  |                    | Self-cooling                                                  |                   | Forced air cooling |      |  |  |
|        | Inverter weight (kg)            |                    | 1.2                                                           | 1.2               | 1.6                | 1.7  |  |  |

## 220V Series Three-Phase

|        | Model SS2-023- 🗌          | □□ K              | 0.4                                                           | 0.75                            | 1.5                | 2.2   | 3.7  |  |  |
|--------|---------------------------|-------------------|---------------------------------------------------------------|---------------------------------|--------------------|-------|------|--|--|
| 1      | HP                        |                   | 0.5                                                           | 1                               | 2                  | 3     | 5    |  |  |
| Abb    | licable Motor Capacity    | kW                | 0.4                                                           | 0.75                            | 1.5                | 2.2   | 3.7  |  |  |
|        | Rated output capacity kV  | /A (Note)         | 1.2                                                           | 2                               | 3.2                | 4.2   | 6.7  |  |  |
| Output | Rated output current A (l | Note)             | 3                                                             | 5                               | 8                  | 11    | 17.5 |  |  |
| put    | Overload current rating   |                   | 150% 60 seconds; 200% 1 second (inverse time characteristics) |                                 |                    |       |      |  |  |
|        | Maximum output voltage    | e                 |                                                               | 3                               | Phase 200~240V A   | С     |      |  |  |
| Power  | Rated power voltage       |                   | 3 Phase 200~240V 50Hz/60Hz                                    |                                 |                    |       |      |  |  |
|        | Power voltage permissib   | le fluctuation    |                                                               | 3 Pha                           | ase 170~264V 50Hz/ | /60Hz |      |  |  |
| dns    | Power frequency permis    | sible fluctuation |                                                               |                                 | ±5%                |       |      |  |  |
| ply    | Power source capacity k   | VA                | 1.5                                                           | 2.5                             | 4.5                | 6.4   | 10   |  |  |
|        | Cooling Method            |                   | Self-cooling                                                  | Self-cooling Forced air cooling |                    |       |      |  |  |
|        | Inverter weight (kg)      |                   | 1.1                                                           | 1.2                             | 1.2                | 1.6   | 1.7  |  |  |

#### 440V Series Three-Phase

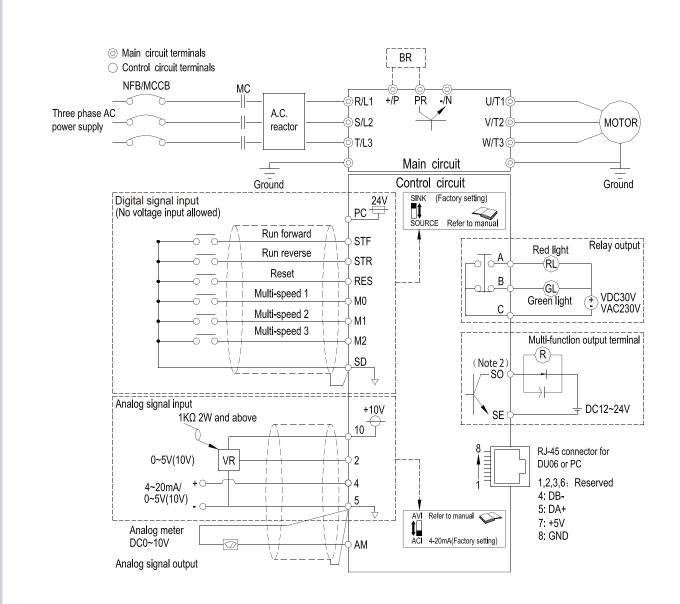
|        | Model <b>SS2-043-</b> 🗌                                     | 0.4               | 0.75                                                          | 1.5          | 2.2 | 3.7       | 5.5       |      |  |
|--------|-------------------------------------------------------------|-------------------|---------------------------------------------------------------|--------------|-----|-----------|-----------|------|--|
|        | Applicable Motor Capacity HP<br>kW                          |                   | 0.5                                                           | 1            | 2   | 3         | 5         | 7.5  |  |
| Abb    |                                                             |                   | 0.4                                                           | 0.75         | 1.5 | 2.2       | 3.7       | 5.5  |  |
|        | Rated output capacity k                                     | /A (Note)         | 1                                                             | 2            | 3   | 4.6       | 6.9       | 9.2  |  |
| Out    | Rated output current A (Note)       Overload current rating |                   | 1.5                                                           | 2.6          | 4.2 | 6         | 9         | 12   |  |
| put    |                                                             |                   | 150% 60 Seconds; 200% 1 Second (inverse time characteristics) |              |     |           |           |      |  |
|        | Maximum output voltag                                       | e                 | Three-phase 380~480V                                          |              |     |           |           |      |  |
| Power  | Rated power voltage                                         |                   | 3 Phase 380~480V 50Hz / 60Hz                                  |              |     |           |           |      |  |
| Ver    | Power voltage permissik                                     | ole fluctuation   | 323~528V 50Hz/60Hz                                            |              |     |           |           |      |  |
| supply | Power frequency permis                                      | sible fluctuation |                                                               |              | ±5  | 5%        |           |      |  |
| ply    | Power source capacity kVA                                   |                   | 1.5                                                           | 2.5          | 4.5 | 6.9       | 10.4      | 13.8 |  |
|        | Cooling Method                                              |                   | Self-cooling                                                  | Self-cooling |     | Forced ai | r cooling |      |  |
|        | Inverter weight (kg)                                        |                   | 1.1                                                           | 1.1          | 1.2 | 1.6       | 1.7       | 1.7  |  |

#### Note:

The test conditions of rated output current, rated output capacity and inverter power consumption are: the carrier frequency (P.72) is at factory setting value; the inverter output voltage is at 220V/440V; the output frequency is at 60Hz, and the ambient temperature is  $50^{\circ}$ C.

## Common Specifications

| Control Mathed              |                                    |         | SVDW/M control V//E control gonoral flux visitor control                                                                                                                                                                              |  |  |  |  |
|-----------------------------|------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Control Method              |                                    | _       | SVPWM control, V/F control, general flux vector control.<br>0.1~599Hz (The starting frequency setting range is betwee 0 and 60Hz).                                                                                                    |  |  |  |  |
| Output Frequency Range      | 1                                  |         |                                                                                                                                                                                                                                       |  |  |  |  |
| Frequency Resolution        | Digital setting                    |         | If the frequency value is set below 100Hz, the resolution will be 0.01Hz.<br>If the frequency value is set above 100Hz, the resolution will be 0.1Hz.                                                                                 |  |  |  |  |
|                             | Analog setting                     |         | When setting the signal DC $0$ -5V, the resolution will be 1/500;<br>When setting the signal DC $0$ -10V or 4-20mA, the resolution will be 1/1000.                                                                                    |  |  |  |  |
| Output Frequency            | Digital setting                    |         | Maximum target frequency±0.01%.                                                                                                                                                                                                       |  |  |  |  |
| Accuracy                    | Analog setting                     |         | Maximum target frequency±0.5%.                                                                                                                                                                                                        |  |  |  |  |
| Voltage / Frequency outpu   | t Characteristics                  |         | Base voltage (P.19), base frequency (P.3) can be arbitrarily set.<br>Constant torque model and applicable load model can be selected (P.14).                                                                                          |  |  |  |  |
| Starting Torque             |                                    |         | 150% 3Hz, 200% 5Hz: when using the general flux vector control.                                                                                                                                                                       |  |  |  |  |
| Torque Boost                |                                    |         | The torque boost setting range between 0 and 30% (P.0), auto boost, sl compensation.                                                                                                                                                  |  |  |  |  |
| Acceleration / Deceleratior | o Curve Characteristics            |         | The resolution (0.01s/0.1s) of acceleration/deceleration time (P.7, P.8) is switche<br>by P.21. The setting range has 0~360s or 0~3600s for selection. And differe<br>acceleration/deceleration curve model can be selected by P. 29. |  |  |  |  |
| DC Braking                  |                                    |         | The DC braking action frequency range between 0 and 120Hz (P.10); the D braking time is 0~60 Seconds (P.11); and the DC braking voltage is 0~30% (P.12 Linear braking and idling braking selection (P.71).                            |  |  |  |  |
| Stall current protection    |                                    |         | The stalling protection level can be set between 0 and 250% (P. 22).                                                                                                                                                                  |  |  |  |  |
| Target Frequency Setting    |                                    |         | Keypad setting, DC 0~5V signal setting, DC 0~10V signal setting, DC 4~20mA signal setting, Multi-speed stage levels setting, communication setting, pulse frequency setting.                                                          |  |  |  |  |
| PID Control                 |                                    |         | Please refer to P.170~P.183 in Chapter 5.                                                                                                                                                                                             |  |  |  |  |
| Multifunction Control Term  | Multifunction Control Terminals    |         | Motor starting (STF, STR), the second function (RT), '16-speed operation' (RL RM, RH, REX), external thermal relay (OH), reset (RES), etc. (can be set by the use (P.80~P.84, P.86)                                                   |  |  |  |  |
|                             | Multi-function output<br>terminals | SO, SE  | P.40 Inverter running (RUN), output frequency detection (FU), Up to outp<br>frequency(SU), overload detection (OL), zero current detection (OME<br>alarm (ALARM), Section detection (PO1), Periodical detection (PO2), ar             |  |  |  |  |
| Multiple Output Terminals   | Multi-function output relay        | А, В, С | P85 Pause detection (PO3), Inverter output (BP), Commercial power-supp output (GP).                                                                                                                                                   |  |  |  |  |
|                             | Analog output                      | AM, 5   | Multi-function DC (0~10V) Output: output frequency, output current (P.54).                                                                                                                                                            |  |  |  |  |
|                             | Running status monitoring          |         | Output frequency monitoring, output current monitoring, and output voltage monitoring, alarm record                                                                                                                                   |  |  |  |  |
| Keypad                      | HELP mode                          |         | Alarm history monitoring.                                                                                                                                                                                                             |  |  |  |  |
| кеурац                      | LED indicator (6)                  |         | Run indicator, frequency monitoring indicator, voltage monitoring indicator, current monitoring indicator, mode switching indicator, and PU control indicator.                                                                        |  |  |  |  |
| Communication Function      |                                    | RS485   | Build-in RS485 communication, RJ-45 connector.                                                                                                                                                                                        |  |  |  |  |
| Protection Mechanism / Al   | arm function                       |         | Output short circuit protection, Over-current protection, (+/P)-(-/N)over voltage protection, under-voltage protection, motor over heat protection (P.9), IGBT module over-heat protection, communication abnormalit protection, etc. |  |  |  |  |
|                             | Ambient temperature                |         | -10 ~ +50C (non-freezing), installation side by side -10~ +40°C .                                                                                                                                                                     |  |  |  |  |
|                             | Ambient humidity                   |         | Below 90%Rh (non-condensing)                                                                                                                                                                                                          |  |  |  |  |
|                             | Storage temperature                |         | -20 ~ +65° <b>C</b>                                                                                                                                                                                                                   |  |  |  |  |
| Environment-LC              | Surrounding environment            |         | Indoor, no corrosive gas, no flammable gas, no flammable dust                                                                                                                                                                         |  |  |  |  |
| Environmental Condition     | Altitude and vibration             |         | Altitude:below 1000 m, Vibration:below 5.9m/s <sup>2</sup> (0.6G).                                                                                                                                                                    |  |  |  |  |
|                             | Enclosure Rating                   |         | IP20                                                                                                                                                                                                                                  |  |  |  |  |
|                             | Pollution level                    |         | 2                                                                                                                                                                                                                                     |  |  |  |  |
|                             | Class of protection                |         | Class 1                                                                                                                                                                                                                               |  |  |  |  |
| Certification               |                                    |         | CE                                                                                                                                                                                                                                    |  |  |  |  |


...

SS2

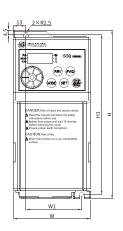
...

## SS2 series General Vector Control Inverter

## Wiring Diagram



## NOTE


- 1. For the usage of the external thermal relay, please refer to P.80~P.84, P.86 in Chapter 5 (OH) on the manual.
- 2. Make sure not to short circuit the PC and SD.
- 3. In the above figure, dotted line area, please refer to 3.5.7on the manual.
- 4. The SO terminal can select to FM or 10X function, please refer to P.64, P.74.
- 5. For single-phase series inverters, there is no T/L3 terminal, and the corresponding wiring(dotted line) doesn' t need to be connected.

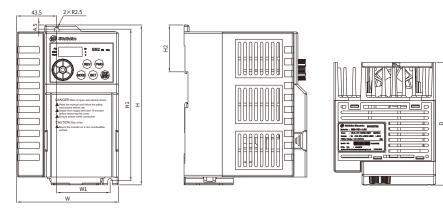


Unit : mm

## Dimensions

#### Frame A








### Frame A

| Model         | H<br>(mm) | H1<br>(mm) | W<br>(mm) | W1<br>(mm) | D<br>(mm) |  |
|---------------|-----------|------------|-----------|------------|-----------|--|
| SS2-021-0.4K  |           |            |           | 80 58 13   |           |  |
| SS2-021-0.75K |           |            |           |            |           |  |
| SS2-023-0.4K  |           | 165        | 20        |            | 124       |  |
| SS2-023-0.75K | 174       |            |           |            |           |  |
| SS2-023-1.5K  | 1/4       | 105        | 80        |            | 154       |  |
| SS2-043-0.4K  |           |            |           |            |           |  |
| SS2-043-0.75K |           |            |           |            |           |  |
| SS2-043-1.5K  |           |            |           |            |           |  |

#### Frame B



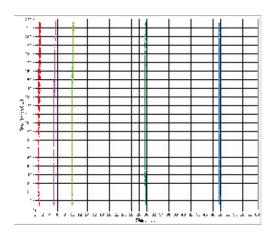
| Frame B      |           |            |           |            |           |
|--------------|-----------|------------|-----------|------------|-----------|
| Model        | H<br>(mm) | H1<br>(mm) | W<br>(mm) | W1<br>(mm) | D<br>(mm) |
| SS2-021-1.5K |           |            |           |            |           |
| SS2-021-2.2K | 1         |            |           |            |           |
| SS2-023-2.2K |           |            |           |            |           |
| SS2-023-3.7K | 174       | 165        | 110.5     | 58         | 134       |
| SS2-043-2.2K | 1         |            |           |            |           |
| SS2-043-3.7K |           |            |           |            |           |
| SS2-043-5.5K | 1         |            |           |            |           |



Communication Inverter






## **Power Range**

| Мос | lel | kW<br>(HP)   | 0.4<br>(0.5) | 1.5<br>(2) | 2.2<br>(3) | 5.5<br>(7.5) |  | 18.5<br>(25) | 22<br>(30) |
|-----|-----|--------------|--------------|------------|------------|--------------|--|--------------|------------|
|     | 021 | 1 phase 220V |              |            |            |              |  |              |            |
| SE3 | 023 | 3 phase 220V |              |            |            |              |  |              |            |
|     | 043 | 3 phase 440V |              |            |            |              |  |              |            |

## **Product Features**

### High Performance Vector Control Technology

• High starting torque: Sensorless vector control (SVC)200% 0.5Hz, and closed-loop vector control (FOC + PG) 180% 0Hz.



## High Performance Synchronous Motor Control Technology

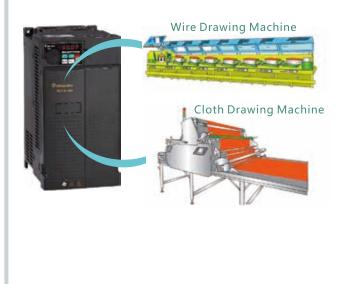
• Support induction motor (IM) and synchronous motor (IPM and SPM) control.

#### Support Multiple High-speed Bus Connections

• Optional high-speed communications: CANopen, Profibus, DeviceNet, EtherCAT, MODBUS TCP.

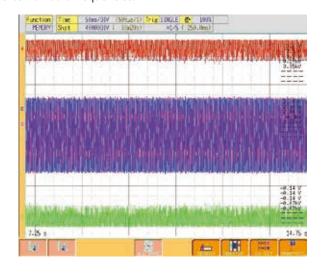





# SE3 series

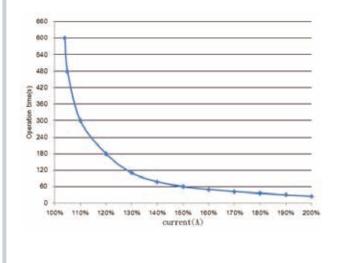
High Speed Closed Loop/ Communication Inverter

## **Product Features**


#### **Multiple Control Modes for Various Applications**

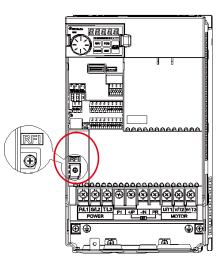
- Position / Speed / Torque / Tension control mode.
- Combination mode (e.g. speed+torque) can be achieved via I/O switch.
- Advanced position control functions: Homing commands, zero speed, Pr/Pt mode(with optional PG cards).




#### Low-noise Carrier Wave Control (Soft-PWM)

• Motor noise is controlled so that the metallic sound is transformed into a more pleasing buzz. Low noise operations to reduce the interference exerted upon external radio frequencies.




#### **Excellent Overload Endurance**

• With a current overload capability of 150% for 60 seconds and 200% for 3 seconds, the setting is suitable for handling large sudden load changes applications such as tooling machinery.



#### **Built-in RFI filer**

• Reduce electromagnetic interference.





## **Product Features**

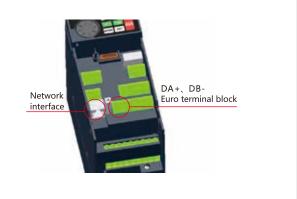
#### **Isolated Air Duct**

• The air duct of the fan is sealed and isolates the heat dissipation system from the electrical parts, so that the dust won't easily enter the drive through the fan.



#### **Complete Protection Functions**

• Phase failure protection, overvoltage protection, overcurrent protection, undervoltage protection, output short-circuit protection, output to ground protection, motor overheat protection, IGBT module overheat protection, communication abnormality protection.


#### **LED Digital Keypad**

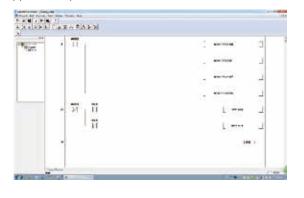
- 1. 5-digit 7-segment display
- 2. Optimized operation JOG Dial



## Quick Connect to External Keypad and Easy Wiring

• Standard RJ45 network interface and DA+ DB- terminals are equipped for multi-machine communication.




#### 12 Sets of Alarm Records

• Complete alarm system for recording the output frequency, output current, output voltage, accumulated rate of temperature increase, PN voltage, total operation time, operational status, alarm trigger time. A total of 12 alarm code, 12 groups of alarm code.

| P.288 | 06-40 | Alarm code query   | 0~12 | 0    | 176 |
|-------|-------|--------------------|------|------|-----|
| P.289 | 06-41 | Alarm code display | Read | Read | 176 |
| P.290 | 06-42 | Alarm code query   | 0~10 | 0    | 176 |
| P.291 | 06-43 | Alarm code display | Read | Read | 176 |

#### **Built-in PLC Functions**

- Provide PLC programming software, easy for editing.
- Applicable for programming small number of points, and support multiple functions.



# SE3 series

## **Product Features**

#### **Grouping Parameters - Easy Setup**

| Group | Parameter<br>Number | Name                                                            | Setting Range  | Default |
|-------|---------------------|-----------------------------------------------------------------|----------------|---------|
| 02-10 | P.60                | Terminal 2-5 filter time0 ~ 2000ms                              |                | 30ms    |
| 02-11 | P.139               | Terminal 2-5 voltage signal bias rate                           | -100.0%~100.0% | 0.0%    |
| 02-12 | P.192               | Terminal 2-5 minimum input positive voltage                     | 0~10.00V       | 0.00V   |
| 02-13 | P.193               | Terminal 2-5 maximum input positive voltage                     | 0~10.00V       | 10.00V  |
| 02-14 | P.194               | Percentage corresponds to terminal 2-5 minimum positive voltage | -100%~100%     | 0.0%    |
| 02-15 | P.195               | Percentage corresponds to terminal 2-5 maximum positive voltage | -100% ~100%    | 100%    |

– SE3 series: Similar functions are grouped into same sectors instead of sequence numbers.

#### **Easy Maintenance**

• The fan is designed on the top to effectively reduce the impact of falling dust, and the terminal wiring will not affect the maintenance of the fan.





## **Model Identification**

| SE3        | 043                                                                   | 0.75K    | XY                                                                          |  |  |
|------------|-----------------------------------------------------------------------|----------|-----------------------------------------------------------------------------|--|--|
|            |                                                                       |          |                                                                             |  |  |
| Series     | Voltage level                                                         | Capacity | Version                                                                     |  |  |
| SE3 series | 043:three phase 440V<br>023:three phase 220V<br>021:single phase 220V | 0.75kW   | None:General model<br>-xy:Customized or specialized or region<br>difference |  |  |



## **Electrical Specifications**

#### 220V series one-phase/three-phase

|        |          | Frame                          |           | A                                                            | A                       |                           | 3         |  |  |  |  |
|--------|----------|--------------------------------|-----------|--------------------------------------------------------------|-------------------------|---------------------------|-----------|--|--|--|--|
|        | N        | lodel SE3-021- 🗌 -xy           |           | 0.4K                                                         | 0.75K                   | 1.5K                      | 2.2K      |  |  |  |  |
|        |          | Rated output capacity          | (kVA)     | 1                                                            | 1.5                     | 3.2                       | 4.2       |  |  |  |  |
|        |          | Rated output current (A        | A)        | 2.7                                                          | 4.5                     | 8                         | 11        |  |  |  |  |
|        | НD       | Applicable motor capacity (HP) |           | 0.5                                                          | 1                       | 2                         | 3         |  |  |  |  |
|        |          | Applicable motor capacity(k    |           | 0.4                                                          | 0.75                    | 1.5                       | 2.2       |  |  |  |  |
|        |          | Overload current ratin         | g         | 150% 6                                                       | i0 seconds 200% 3 secon | ds (inverse time characte | eristics) |  |  |  |  |
| Q      |          | Carrier frequency (kHz         | )         |                                                              | 1~15                    | 5kHz                      |           |  |  |  |  |
| Output |          | Rated output capacity (kVA)    |           | 1.2                                                          | 2                       | 3.4                       | 4.8       |  |  |  |  |
| l It   |          | Rated output current (A)       |           | 3                                                            | 5                       | 8.5                       | 12.5      |  |  |  |  |
|        | ND       | Applicable motor capacity (HP) |           | 0.5                                                          | 1                       | 2                         | 3         |  |  |  |  |
|        |          | Applicable motor capa          | city (kW) | 0.4                                                          | 0.75                    | 1.5                       | 2.2       |  |  |  |  |
|        |          | Overload current rating        |           | 120% 60 seconds 150% 3seconds (inverse time characteristics) |                         |                           |           |  |  |  |  |
|        |          | Carrier frequency (kHz)        |           | 1~15kHz                                                      |                         |                           |           |  |  |  |  |
|        | Maximu   | ım output voltage              |           | Three-phase 200-240V                                         |                         |                           |           |  |  |  |  |
|        | Rated p  | ower voltage                   |           |                                                              | One-phase 200-2         | 240V 50Hz / 60Hz          |           |  |  |  |  |
| Power  | Power v  | oltage permissible fluct       | uation    |                                                              | One -phase 170-2        | 264V 50Hz / 60Hz          |           |  |  |  |  |
| ver    | Power f  | requency permissible flu       | uctuation |                                                              | ±!                      | 5%                        |           |  |  |  |  |
| lns    | Power s  | ource capacity (kVA)           |           | 1.5                                                          | 2.5                     | 4.5                       | 6.9       |  |  |  |  |
| supply | Pated in | nput current(A) (Note1)        | HD        | 5.9                                                          | 9.7                     | 14.8                      | 23.1      |  |  |  |  |
|        |          |                                | ND        | 6.7                                                          | 10.5                    | 17.9                      | 26.3      |  |  |  |  |
|        | Cooling  | method                         |           | Self cooling                                                 |                         | Forced air cooling        |           |  |  |  |  |
|        | Weight   | (kg)                           |           | 1.0                                                          | 1.0                     | 1.5                       | 1.5       |  |  |  |  |

|        |         | Frame                         |            |                                                               | А     |            | ĺ          | 3           | (          | C .         |       | )    |
|--------|---------|-------------------------------|------------|---------------------------------------------------------------|-------|------------|------------|-------------|------------|-------------|-------|------|
|        | Ν       | /lodel SE3-023- 🗌 -xy         |            | 0.4K                                                          | 0.75K | 1.5K       | 2.2K       | 3.7K        | 5.5K       | 7.5K        | 11K   | 15K  |
|        |         | Rated output capacity         | (kVA)      | 1.2                                                           | 2     | 3.2        | 4.2        | 6.7         | 9.5        | 12.5        | 18.3  | 24.7 |
|        |         | Rated output current (        | (A)        | 3                                                             | 5     | 8          | 11         | 17.5        | 25         | 33          | 49    | 65   |
|        | HD      | Applicable motor capa         | acity (HP) | 0.5                                                           | 1     | 2          | 3          | 5           | 7.5        | 10          | 15    | 20   |
|        |         | Applicable motor capacity(kW) |            | 0.4                                                           | 0.75  | 1.5        | 2.2        | 3.7         | 5.5        | 7.5         | 11    | 15   |
|        |         | Overload current rating       |            |                                                               | 150   | % 60 secor | ds 200% 3s | seconds (in | verse time | characteris | tics) |      |
| Q      |         | Carrier frequency (kHz        | <u>z</u> ) |                                                               |       |            |            | 1~15kHz     |            |             |       |      |
| Output |         | Rated output capacity         | (kVA)      | 1.3                                                           | 2.1   | 3.4        | 4.8        | 7.4         | 10.3       | 13.7        | 19.4  | 26.3 |
| Lt     |         | Rated output current          | (A)        | 3.2                                                           | 5.5   | 8.5        | 12.5       | 19.5        | 27         | 36          | 51    | 69   |
|        | ND      | Applicable motor capa         | acity (HP) | 0.5                                                           | 1     | 2          | 3          | 5           | 7.5        | 10          | 15    | 20   |
|        |         | Applicable motor capacit      |            | 0.4                                                           | 0.75  | 1.5        | 2.2        | 3.7         | 5.5        | 7.5         | 11    | 15   |
|        |         | Overload current rating       |            | 120% 60 seconds 150% 3 seconds (inverse time characteristics) |       |            |            |             |            |             |       |      |
|        |         | Carrier frequency (kHz        | <u>z</u> ) | 1~15kHz                                                       |       |            |            |             |            |             |       |      |
|        | Maxim   | um output voltage             |            | Three-phase 200-240V                                          |       |            |            |             |            |             |       |      |
|        | Rated p | ower voltage                  |            |                                                               |       | ٦          | Three-phas | e 200-240V  | 50Hz /60H  | Z           |       |      |
| Power  | Power   | voltage permissible fluc      | tuation    |                                                               |       | 1          | Three-phas | e 170-264V  | 50Hz/ 60H  | Z           |       |      |
| Ver    | Power   | frequency permissible fl      | uctuation  |                                                               |       |            | -          | ±5%         |            |             |       |      |
| lns    | Power   | source capacity (kVA)         |            | 1.5                                                           | 2.5   | 4.5        | 6.4        | 10          | 12         | 17          | 20    | 28   |
| supply | Rated i | nput current(A) (Note1)       | HD         | 3.5                                                           | 6.0   | 9.6        | 13.2       | 20.4        | 30         | 39.6        | 58.8  | 78   |
|        | Nateur  |                               | ND         | 3.8                                                           | 6.6   | 10.2       | 15         | 23.4        | 32.4       | 43.2        | 61.2  | 82.8 |
|        | Cooling | g method                      |            |                                                               |       |            | For        | ced air coo | ling       |             |       |      |
|        | Weight  | (kg)                          |            | 1.0                                                           | 1.0   | 1.0        | 1.5        | 1.5         | 4.0        | 4.1         | 5.7   | 5.8  |

#### Note1:

The value of rated input current is not only affected by the power transformer, input reactor and wiring conditions but also fluctuates with the impedance on the power side.

Note:

The test conditions of rated output current, rated output capacity and inverter power consumption are:the carrier frequency (P.72) is at the set value; the inverter output voltage is at 220V; the output frequency is at 60Hz, and the ambient temperature is 40°C.

## E3 series S

## **Electrical Specifications**

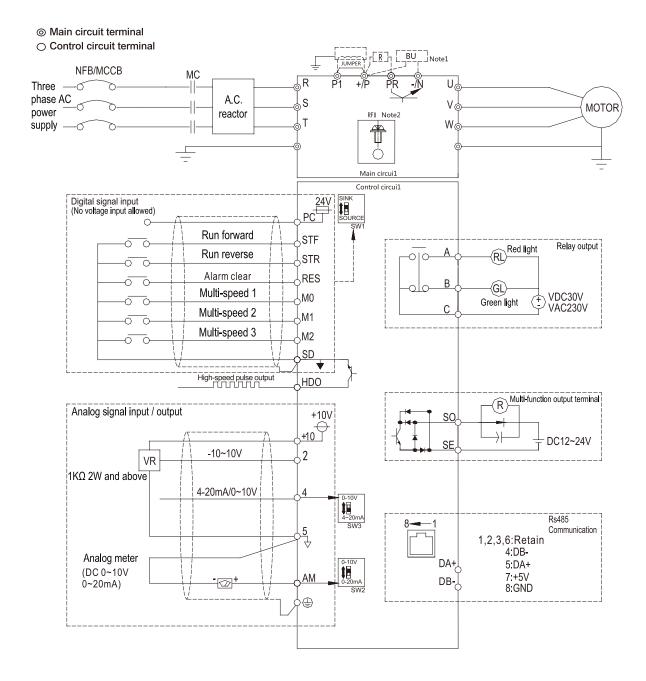
#### 440V series three-phase

|              |          | Frame                          |                                                |                      | А     |          | E        | 3        |           | С          |          | D          |       |      |
|--------------|----------|--------------------------------|------------------------------------------------|----------------------|-------|----------|----------|----------|-----------|------------|----------|------------|-------|------|
|              | M        | odel SE3-043- 🗌 -xy            |                                                | 0.4K                 | 0.75K | 1.5K     | 2.2K     | 3.7K     | 5.5K      | 7.5K       | 11K      | 15K        | 18.5K | 22K  |
|              |          | Rated output capacity          | (kVA)                                          | 1                    | 2     | 3        | 4.6      | 6.9      | 10        | 14         | 18       | 25         | 29    | 34   |
|              |          | Rated output current (         | A)                                             | 1.5                  | 2.7   | 4.2      | 6        | 9        | 12        | 17         | 24       | 32         | 38    | 45   |
|              | НД       | Applicable motor capa          | icity (HP)                                     | 0.5                  | 1     | 2        | 3        | 5        | 7.5       | 10         | 15       | 20         | 25    | 30   |
|              |          | Applicable motor capacity(kW)  |                                                | 0.4                  | 0.75  | 1.5      | 2.2      | 3.7      | 5.5       | 7.5        | 11       | 15         | 18.5  | 22   |
|              |          | Overload current ratin         | g                                              |                      | 1509  | % 60 sec | onds 200 | )% 3 sec | onds (inv | erse tim   | e charac | teristics) | )     |      |
| 0            |          | Carrier frequency (kHz         | <u>z)</u>                                      |                      |       |          |          | 1~       | 15kHz     |            |          |            |       |      |
| Output       |          | Rated output capacity          | (kVA)                                          | 1.4                  | 2.3   | 3.5      | 5        | 8        | 12        | 15.6       | 21.3     | 27.4       | 31.6  | 37.3 |
| t            | ND       | Rated output current (A)       |                                                | 1.8                  | 3     | 4.6      | 6.5      | 10.5     | 15.7      | 20.5       | 28       | 36         | 41.5  | 49   |
|              |          | Applicable motor capa          | icity (HP)                                     | 0.5                  | 1     | 2        | 3        | 5        | 7.5       | 10         | 15       | 20         | 25    | 30   |
|              |          | Applicable motor capacity (kW) |                                                | 0.4                  | 0.75  | 1.5      | 2.2      | 3.7      | 5.5       | 7.5        | 11       | 15         | 18.5  | 22   |
|              |          | Overload current ratin         | 120% 60 seconds (inverse time characteristics) |                      |       |          |          |          |           |            |          |            |       |      |
|              |          | Carrier frequency (kHz         | <u>z</u> )                                     | 1~15kHz              |       |          |          |          |           |            |          |            |       |      |
|              | Maximu   | ım output voltage              |                                                | Three-phase 380-480V |       |          |          |          |           |            |          |            |       |      |
|              | Rated p  | ower voltage                   |                                                |                      |       |          | Three-   | ohase 38 | 0-480V 5  | 50Hz / 60  | )Hz      |            |       |      |
| Pov          |          | oltage permissible fluct       |                                                |                      |       |          | Three-   | ohase 32 | 3-528V 5  | 50Hz / 60  | )Hz      |            |       |      |
| /er          | Power f  | requency permissible flu       | uctuation                                      |                      |       |          |          |          | ±5%       |            |          |            |       |      |
| dns          | Power s  | ource capacity (kVA)           |                                                | 1.5                  | 2.5   | 4.5      | 6.9      | 10.4     | 11.5      | 16         | 20       | 27         | 32    | 41   |
| Power supply | Rated in | put current(A) (Note1)         | HD                                             | 2.1                  | 3.7   | 5.8      | 6.5      | 9.9      | 14.3      | 18.7       | 27.5     | 35.2       | 41.8  | 48.5 |
|              |          | ND                             |                                                | 2.5                  | 4.2   | 6.4      | 7.2      | 11.6     | 17.3      | 22.6       | 30.8     | 39.6       | 47.7  | 53.9 |
|              | Cooling  | method                         |                                                | Self cooling         |       |          |          |          | Forced a  | ir cooling | 9        |            |       |      |
|              | Weight(  | kg)                            |                                                | 1.0                  | 1.0   | 1.0      | 1.5      | 1.5      | 3.9       | 4.0        | 4.0      | 5.7        | 5.8   | 5.8  |

Note1: The value of rated input current is not only affected by the power transformer, input reactor and wiring conditions but also fluctuates with the impedance on the power side.

Note: The test conditions of rated output current, rated output capacity and inverter power consumption are:the carrier frequency (P.72) is at the set value; the inverter output voltage is at 220V; the output frequency is at 60Hz, and the ambient temperature is 40°C.




## Common Specifications

|                                                                                                                                                                                                                                                                                          | ertification                          | CE                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                          | Class of protection                   | Class I                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | The degree of environmental pollution | 2                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | Grade of protection                   | IP20                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | Vibration                             | Vibration below 5.9m/s2 (0.6G).                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Environment                                                                                                                                                                                                                                                                              | Altitude                              | Altitude below 2000 m, when altitude is above 1000 m, derate the rated current 2% per 100 m                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | Surrounding environment               | Indoor, no corrosive gas, no flammable gas, no flammable dust.                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | Storage temperature                   | -20 ~ +65°C .                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | Ambient humidity                      | Below 90%Rh (non-condensing).                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | Ambient temperature                   | HD : -10 ~ +50°C (non-freezing) , ND : -10 ~ +40°C (non-freezing), please refer to 3.4.2 Class of protection and operation temperature for details.                                                                                                                                            |  |  |  |  |  |  |
| Protection mech                                                                                                                                                                                                                                                                          | nanism / alarm function               | Output short circuit protection, Over-current protection, over-voltage protection, under-<br>voltage protection, motor over-heat protection, IGBT module over-heat protection,<br>communication abnormality protection,                                                                        |  |  |  |  |  |  |
| Communication                                                                                                                                                                                                                                                                            | function                              | Built-in Shihlin / Modbus communication protocol, can select MODBUS TCP, CANopen,<br>Profibus, DeviceNet, EtherCAT card                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | LED indicator (7)                     | Forward rotation indicator, reverse rotation indicator, frequency monitoring indicator, mode switch indicator ,PU control indicator, PLC indicator and run indicator                                                                                                                           |  |  |  |  |  |  |
| Built-in simple P                                                                                                                                                                                                                                                                        | Operation monitoring                  | Output frequency, output current, output voltage, PN voltage, output torque, electronic thermal accumulation rate, temperature rising accumulation rate, output power, Analog value input signal, digital input and output terminal status… ; alarm signal and alarm history 12 groups at most |  |  |  |  |  |  |
| Built-in simple PLC                                                                                                                                                                                                                                                                      |                                       | Supports 21 basic instructions and 14 application instructions, including PC editing software;                                                                                                                                                                                                 |  |  |  |  |  |  |
| PID control                                                                                                                                                                                                                                                                              |                                       | Please refer to parameter description                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| arget frequency setting                                                                                                                                                                                                                                                                  |                                       | Keypad setting, DC 0~5V / 10V signal, DC -10~+10V signal, DC 4~20 mA signal, multiple speed stage level setting, communication setting, HDI setting.                                                                                                                                           |  |  |  |  |  |  |
| Stalling protecti                                                                                                                                                                                                                                                                        | on                                    | The stalling protection level can be set to 0~250%                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Drive motor                                                                                                                                                                                                                                                                              |                                       | Induction motor(IM), permanent magnet motor(SPM, IPM)                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Acceleration / d                                                                                                                                                                                                                                                                         | eceleration curve characteristics     | Linear acceleration / deceleration curve, S shape acceleration /deceleration curve                                                                                                                                                                                                             |  |  |  |  |  |  |
| V/F characterist                                                                                                                                                                                                                                                                         | ics                                   | Constant torque curve, variable torque curve, five-point curve, VF separation                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Start torque                                                                                                                                                                                                                                                                             |                                       | 200% 0.5 Hz                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Speed control ra                                                                                                                                                                                                                                                                         | ange                                  | IM: When SVC, 1:200; when FOC+PG, 1:1000.<br>PM: When SVC, 1:20; when FOC+PG, 1:1000.                                                                                                                                                                                                          |  |  |  |  |  |  |
| frequency<br>accuracy                                                                                                                                                                                                                                                                    | Analog setting                        | Maximum target frequency $\pm$ 0.1%.                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Output                                                                                                                                                                                                                                                                                   | Digital setting                       | Maximum target frequency±0.01%.                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Frequency<br>setting<br>resolution<br>Dutput<br>frequency<br>accuracy<br>Speed control r<br>Start torque<br>//F characterist<br>Acceleration / c<br>Drive motor<br>Stalling protect<br>Target frequence<br>PID control<br>Built-in simple I<br>Keypad<br>Communication<br>Protection mec | Analog setting                        | 0.01Hz/60Hz(terminal 2: -10 $\sim$ +10V / 13bit)<br>0.15Hz/60Hz(terminal 2: 0 $\sim \pm$ 10V / 12bit)<br>0.03Hz/60Hz(terminal 2: 0 $\sim$ 5V / 11bit)<br>0.06Hz/60Hz(terminal 4: 0~10V, 4-20mA / 12bit)<br>0.12Hz/60Hz(terminal 4: 0 $\sim$ 5V / 11bit)                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          | Digital setting                       | The resolution is 0.01Hz.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Output frequen                                                                                                                                                                                                                                                                           | cy range                              | 0-599Hz(*1)                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                          |                                       | sensorless vector control (SVC), close-loop vector control (FOC+PG), torque control (TQC+PG).                                                                                                                                                                                                  |  |  |  |  |  |  |

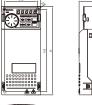
\*1: SE3 series can be customized up to 1500Hz. Please contact us if necessary.

# SE3 series

## Wiring Diagram



## NOTE


- 1. Make sure 10, SD, SE, 5 and PC are not shorted to each other.
- 2. The DC reactor between +/P and P1 is optional, please short +/P and P1 when DC reactor is not used.
- 3. All series have built-in braking unit. Please connect braking resistor between +/P and PR.
- 4. All series have built-in RFI filter to suppress electromagnetic interference. In order to comply with CE regulations, please refer to relevant instructions in the manual for installation.



Unit : mm

## Dimensions

#### Frame A



| Frame A           |           |            |           |            |           |            |
|-------------------|-----------|------------|-----------|------------|-----------|------------|
| _                 |           |            |           |            |           |            |
| Model type        | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | S1<br>(mm) |
| SE3-043-0.4~1.5K  |           |            |           |            |           |            |
| SE3-023-0.4~1.5K  | 74.0      | 62.0       | 167.0     | 155.0      | 144.0     | 5.2        |
| SE3-021-0.4~0.75K |           |            |           |            |           |            |

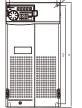
## 

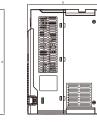
F

000 00000000

-

Frame B

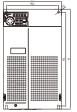




| Frame | В |
|-------|---|
|       |   |

Frame D

| Model type       | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | S1<br>(mm) |
|------------------|-----------|------------|-----------|------------|-----------|------------|
| SE3-043-2.2~3.7K |           |            |           |            |           |            |
| SE3-023-2.2~3.7K | 105.0     | 93.0       | 178.0     | 166.0      | 146.0     | 5.2        |
| SE3-021-1.5~2.2K |           |            |           |            |           |            |

### Frame C






| Frame C          |       |       |           |       |       |      |  |
|------------------|-------|-------|-----------|-------|-------|------|--|
|                  | W     | W1    | Н         | H1    | D     | S1   |  |
| Model type       | (mm)  | (mm)  | п<br>(mm) | (mm)  | (mm)  | (mm) |  |
| SE3-043-5.5~11K  | 141.0 | 123.6 | 270.0     | 252.6 | 185.0 | 6.5  |  |
| SE3-023-5.5~7.5K | 141.0 |       |           |       |       |      |  |



Frame D





| Model type     | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | S1<br>(mm) |
|----------------|-----------|------------|-----------|------------|-----------|------------|
| SE3-043-15~22K | 175.0     | 156.4      | 300.0     | 281.4      | 191.8     | 6.2        |
| SE3-023-11~15K | 175.0     |            |           |            |           |            |



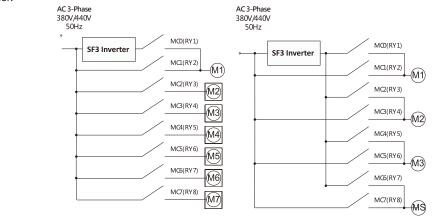
## Communication Vector Control Inverter





# **Product Range**

|     | ۸odel   |         | W<br>IP)          | 3.7<br>(5) | 5.5<br>(7.5) | 7.5<br>(10) | 11<br>(15) | 15<br>(20) | 18.5<br>(25) | 22<br>(30) | 30<br>(40) | 37<br>(50) | 45<br>(60) | 55<br>(75) | 75<br>(100) | 90<br>(120) | 110<br>(150) | 132<br>(175) | 160<br>(215) | 185<br>(250) | 220<br>(300) | 250<br>(335) | 280<br>(375) | 315<br>(420) | 355<br>(475) |
|-----|---------|---------|-------------------|------------|--------------|-------------|------------|------------|--------------|------------|------------|------------|------------|------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|     | 652.042 | 3 phase | 150%60s<br>200%3s |            | /            | /           | /          | 1          | /            | /          | /          | 1          | /          | /          | 1           | /           | /            | /            | /            | /            | 1            | 1            | /            | /            | /            |
| SF: | SF3-043 | 440V    | 120%60s           |            |              |             | /          | /          | /            |            | /          |            | /          | /          | /           |             | /            | /            | /            | /            | /            | /            |              |              |              |


# **Model Identification**

| SF3        | 043 5.5              | 5K/3.7               | KG XY                                                                    |
|------------|----------------------|----------------------|--------------------------------------------------------------------------|
|            |                      |                      |                                                                          |
| Series     | Voltage level        | Capacity             | Version                                                                  |
| SF3 series | 043:three phase 440V | ND:5.5kW<br>HD:3.7kW | None:General model<br>-xy:Customized or specialized or region difference |

# **Product Features**

#### **Multi-Pump Control**

• Multi-Pump Control (with EB308R), with multiple relays to support pump control. Controlling maximum of 7 pumps at the same time for 1 inverter.



### PC Communication Software

• This provides remote control of multiple inverters for parameters setup, copy and monitoring.

| # 6 ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|----------------|
| - Million and American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |                |
| Re-grine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spilling Birtit    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |                |
| PROPERTY OF TAXABLE PROPERTY AND ADDRESS OF TAXABLE PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 24            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |                |
| Contract in the local division of the special division of the local division of the local division of the special division of                                                                                                                                                                                                                                                                                                                            |                    | Transfer ber  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100             | and here .          |                |
| A REAL PROPERTY AND INCOME.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |               | Thick.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | ( freed             | A to be send   |
| Identica il data (Prilità M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Seres Saling       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                     | -              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Searchase          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B. intention (s | In such division    | · the route    |
| Carrier Sectors of Assess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |                |
| 8.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>.</u>           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                     | 150            |
| H MANA<br>H MANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COLUMN TWO IS NOT  | -             | 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0             |                     | 2              |
| R status<br>R status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State Inc.         | n.4.1011 3    | - 9214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Die in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mont win the    | the particular sub- | n het          |
| Fateline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |                |
| H Jinine .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00               | 9.000         | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |                |
| Ministration<br>14 Income                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | 100 ( ) 1     | Allorad Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -               | -                   | Arreston 1     |
| No concessione de la concessio                                                                                                                                                                                                                                                                                                                           | Contraction of the | second second | Contract of the local division of the local |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | And the second  | (a.e. 194           | fring team     |
| N status<br>N status<br>N status<br>N status<br>N status<br>N status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -               | lanar talar         | 2-ring tase    |
| W character<br>H cha |                    |               | ameng rank<br>1799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | la ar rae           | Series term    |
| B down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                  | 111           | anny ras<br>Fis<br>Fis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -               | Jacore e dan        | Integration of |
| A clubus                                                                                                                                                                                                                                                                                                                                     |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 - 1<br>4 - 1<br>4 - 10<br>4 - 10<br>5 - |                 | Jacore e dan        | Joring Same    |
| A closes     A closes     A closes     Control     Contro     Contro     Control     Control     Control     Control                                                                                                                                                                                                                                                                                                                                     |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 1.1.1         |                     | Joring Lase    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |               | Internet<br>File<br>File<br>File<br>File<br>File<br>File<br>File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 201<br>2010<br>2010<br>2010<br>2010<br>2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | larar tan           | Integration 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |               | 100 (100<br>110<br>1100<br>1100<br>1100<br>1100<br>1100<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . telstet       | ) (ar sec 1970)     | Joing taxe     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |               | Internet<br>File<br>File<br>File<br>File<br>File<br>File<br>File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | . (ar an 1999)      | Sering taxes   |
| A character     A charact                                                                                                                                                                                                                                                                                                                                |                    |               | 100 (100<br>110<br>1100<br>1100<br>1100<br>1100<br>1100<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Server reter        | Sering taxes   |
| P         Advance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |               | File<br>File<br>File<br>File<br>File<br>File<br>File<br>File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Server reter        | Joing team     |

# SF3 series

## Communication Vector Control Inverter

#### 1. **Isolated Air Channel**

• Ventilation (air flow path) is isolated from the surface of thermal dissipation units and electrical parts. Dust will not be able to infiltrate the interior of the inverter through the fans.



Note: Even though the cooling duct is complete isolated, but if the inverter is installed at the environment where lots of dust or oil gas with out protection, the dust will still pass into inverter.

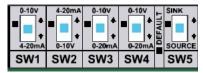
# Product



# 2. Enhanced PCB Coating

- Protect drive and ensure its operation safety and stability.
- Compliance with international standards IEC 60721-3-3 class 3C2.



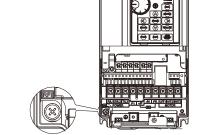

Corrosion proof Dust proof

# **3**. Terminal Block for Quick Wiring

- Standard RJ45 internet connection with DA+, DB- Euroblock, easy connection for multi-machine communication.
- Support maximum 100kHz pulse input(HDI) and output(HDI) signal.







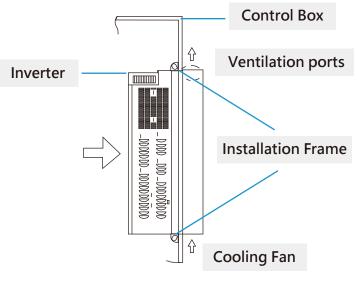



# Features



# 6. Built-in RFI Filter • Reduce electromagnetic interference.




# **4.** LCD Operation Interface

- Support 2 display styles.
- Able to simultaneously display 6 sets of operational data.
- Calendar support.
- Offer both English and Chinese language interfaces.
- Capable of storing 3 sets of parameters.
- Support shuttle settings.



# 5. Through-the-Wall Installation Support Provided for the Entire Series

• Improve heat dissipation, reduce heat generation within the cabinet, and improve protection for the cabinet contents.



# F3 series S

# Communication Vector Control Inverter

# **Electrical Specifications**

### 440V three-phase

|              |                         | Frame                          |               |                                | ۹                              |         | В        |          |           |          | C         |           |        | D       |          |  |
|--------------|-------------------------|--------------------------------|---------------|--------------------------------|--------------------------------|---------|----------|----------|-----------|----------|-----------|-----------|--------|---------|----------|--|
|              |                         | Model SF3-043- 🗌 K 🗌 🖡         | (G            | 5.5/3.7                        | 7.5 /5.5                       | 11/7.5  | 15/11    | 18.5/15  | 22/18.5   | 30/22    | 37/30     | 45/37     | 55/45  | 75/55   | 90/75    |  |
|              | 1                       | Rated output capacity (kV      | /A)           | 10                             | 14                             | 18      | 25       | 29       | 34        | 46       | 56        | 69        | 84     | 114     | 137      |  |
|              |                         | Rated output current (A)       |               | 13                             | 18                             | 24      | 32       | 38       | 45        | 60       | 73        | 91        | 110    | 150     | 180      |  |
|              | ND                      | Applicable motor capacity      | y (HP)        | 7.5                            | 10                             | 15      | 20       | 25       | 30        | 40       | 50        | 60        | 75     | 100     | 120      |  |
|              |                         | Applicable motor capacity      |               | 5.5                            | 7.5                            | 11      | 15       | 18.5     | 22        | 30       | 37        | 45        | 55     | 75      | 90       |  |
|              |                         | Overload current rating        |               |                                |                                |         | 120% 6   | 0 secon  | ds (invei | se time  | charact   | eristics) |        |         |          |  |
| 0            |                         | Carrier frequency (kHz)        |               |                                |                                | 1~15kH  | Z        |          |           |          |           | 1~10kHz   | Z      |         |          |  |
| Output       |                         | Rated output capacity (kW      | /A)           | 6.9                            | 10                             | 14      | 18       | 25       | 29        | 34       | 46        | 56        | 69     | 84      | 114      |  |
| ut           |                         | Rated output current (A)       |               | 9                              | 13                             | 18      | 24       | 32       | 38        | 45       | 60        | 73        | 91     | 110     | 150      |  |
|              | НД                      | Applicable motor capacity      | y (HP)        | 5                              | 7.5                            | 10      | 15       | 20       | 25        | 30       | 40        | 50        | 60     | 75      | 100      |  |
|              |                         | Applicable motor capacity (kW) |               |                                | 5.5                            | 7.5     | 11       | 15       | 18.5      | 22       | 30        | 37        | 45     | 55      | 75       |  |
|              |                         | Overload current rating        |               |                                |                                |         | 150% 6   | 0 secon  | ds (invei | rse time | e charact | eristics) |        |         |          |  |
|              | Carrier frequency (kHz) |                                |               |                                |                                |         |          |          | 1~1       | 5kHz     |           |           |        |         |          |  |
|              |                         | mum output voltage             |               |                                | Three-phase 380-480V           |         |          |          |           |          |           |           |        |         |          |  |
| _            |                         | d power voltage                |               |                                | Three-phase 380-480V 50Hz/60Hz |         |          |          |           |          |           |           |        |         |          |  |
| NO0          |                         | vable fluctuating range of     |               | Three-phase 342-528V 50Hz/60Hz |                                |         |          |          |           |          |           |           |        |         |          |  |
| /er          |                         | able fluctuating range of po   | wer frequency |                                | ±5%                            |         |          |          |           |          |           |           |        |         |          |  |
| Power supply | Powe                    | er source capacity (kVA)       |               | 10.4                           | 11.5                           | 16      | 20       | 27       | 32        | 41       | 52        | 65        | 79     | 100     | 110      |  |
| ply          | Rate                    | d input current(A) (Note1)     | HD            | 14                             | 18                             | 21      | 26       | 35       | 40        | 47       | 63        | 74        | 101    | 114     | 157      |  |
|              |                         |                                | ND            | 18                             | 21                             | 26      | 35       | 40       | 47        | 63       | 74        | 101       | 114    | 157     | 167      |  |
|              |                         | ing method                     |               |                                |                                |         |          | 1        | orced a   |          | <u> </u>  |           |        |         |          |  |
|              | Weig                    | ht(kg)                         |               | 3                              | 3                              | 6       | 6        | 6        | 10        | 10       | 10        | 11        | 25     | 26      | 30       |  |
|              |                         | Frame                          |               |                                | F                              |         |          | F        |           |          | G         |           |        | Н       |          |  |
|              |                         | Model SF3-043- 🗌 K 🗌 I         | KG            | 110/9                          | 0 132                          | / 110 1 | 60 / 132 | 185 / 10 | 50 220    | / 185 2  | 50 / 220  | 280 / 2   | 50 315 | / 280 3 | 55 / 315 |  |
|              |                         | Rated output capacity (kV      | /A)           | 168                            | 1                              | 98      | 236      | 295      | 30        | 57       | 402       | 438       | 4      | 91      | 544      |  |
|              |                         | Rated output current (A)       |               | 220                            | 2                              | 60      | 310      | 340      | 42        | 25       | 480       | 530       | 6      | 20      | 683      |  |
|              |                         | Applicable motor capacity      | y (HP)        | 150                            | 1                              | 75      | 215      | 250      | 30        | 00       | 355       | 375       | 4      | 20      | 475      |  |
|              | ND                      | Applicable motor capacity      | y(kW)         | 110                            | 1                              | 32      | 160      | 185      | 22        | 20       | 250       | 280       | 3      | 15      | 355      |  |
|              |                         | Overload current rating        |               |                                |                                |         | 120% 6   | 0 secon  | ds (invei | se time  | e charact | eristics) |        |         |          |  |
| Q            |                         | Carrier frequency (kHz)        |               |                                |                                |         |          |          | 1~9       | kHz      |           |           |        |         |          |  |
| Output       |                         | Rated output capacity (kv      | /A)           | 137                            | 1                              | 68      | 198      | 236      | 29        | 95       | 367       | 402       | 4      | 38      | 491      |  |
| t            |                         | Rated output current (A)       |               | 180                            | 2                              | 20      | 260      | 310      | 34        | 40       | 425       | 480       | 5      | 30      | 620      |  |
|              | HD                      | Applicable motor capacity      | y (HP)        | 120                            | 1                              | 50      | 175      | 215      | 25        | 50       | 300       | 335       | 3      | 75      | 420      |  |
|              | שחן                     | Applicable motor capacity      | (1/1/1)       | 00                             | 1                              | 10      | 122      | 160      | 10        | DE       | 220       | 250       | 2      | 00      | 215      |  |

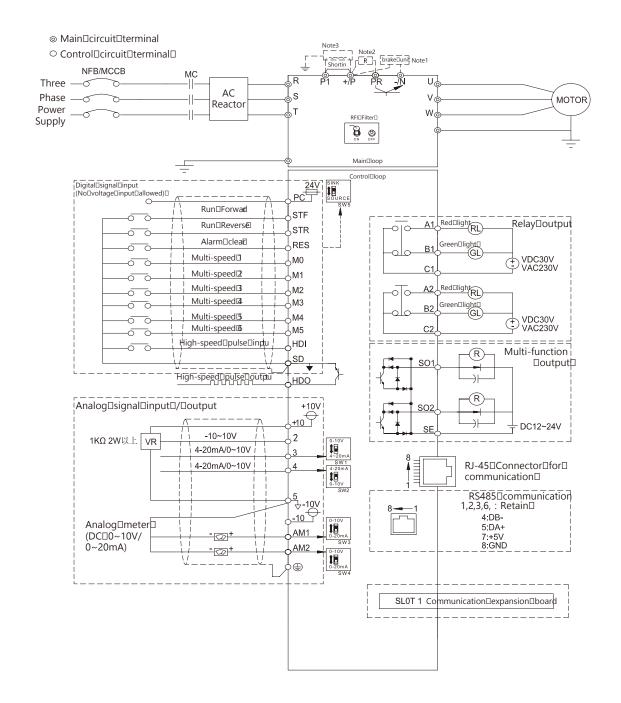
| -      | Rated output current (A)          |                               |               | 180 | 220                                            | 260 | 310   | 340         | 425   | 480 | 530 | 620 |  |  |  |  |
|--------|-----------------------------------|-------------------------------|---------------|-----|------------------------------------------------|-----|-------|-------------|-------|-----|-----|-----|--|--|--|--|
|        | HD Applicable motor capacity (HP) |                               |               | 120 | 150                                            | 175 | 215   | 250         | 300   | 335 | 375 | 420 |  |  |  |  |
|        | Applicable motor capacity (kW)    |                               |               | 90  | 110                                            | 132 | 160   | 185         | 220   | 250 | 280 | 315 |  |  |  |  |
|        |                                   | Overload current rating       |               |     | 150% 60 seconds (inverse time characteristics) |     |       |             |       |     |     |     |  |  |  |  |
|        |                                   | Carrier frequency (kHz)       |               |     |                                                |     |       | 1~10kHz     |       |     |     |     |  |  |  |  |
|        | Maxi                              | mum output voltage            |               |     |                                                |     | Three | -phase 380  | -480V |     |     |     |  |  |  |  |
|        | Rated                             | d power voltage               |               |     | Three-phase 380-480V 50Hz/60Hz                 |     |       |             |       |     |     |     |  |  |  |  |
| Power  | Allow                             | vable fluctuating range of p  | ower voltage  |     | Three-phase 342-528V 50Hz/60Hz                 |     |       |             |       |     |     |     |  |  |  |  |
|        | Allow                             | able fluctuating range of pov | ver frequency |     |                                                |     |       | ±5%         |       |     |     |     |  |  |  |  |
| supply | Powe                              | er source capacity (kVA)      |               | 137 | 165                                            | 198 | 247   | 295         | 367   | 402 | 438 | 491 |  |  |  |  |
| ply    | Data                              | d input current(A) (Note1)    | HD            | 167 | 207                                            | 240 | 300   | 380         | 400   | 500 | 550 | 650 |  |  |  |  |
|        | Rated input current(A) (Note1) ND |                               | 207           | 240 | 300                                            | 380 | 400   | 500         | 550   | 650 | 700 |     |  |  |  |  |
|        | Cooling method                    |                               |               |     |                                                |     | For   | ced air coo | ling  |     |     |     |  |  |  |  |
|        | Weight(kg)                        |                               |               | 38  | 39                                             | 56  | 56    | 93          | 93    | 93  | 120 | 120 |  |  |  |  |

Note1: The value of rated input current is not only affected by the power transformer, input reactor and wiring conditions but also fluctuates with the impedance on the power side.

#### Note:

The test conditions of rated output current, rated output capacity and inverter power consumption are:the carrier frequency (P.72) is at the set value; the inverter output voltage is at 220V; the output frequency is at 60Hz, and the ambient temperature is 40°C.




# Common Specifications

| Control method        |                                       | SVPWM, V/F, general flux vector control, sensorless vector control (SVC).                                                                                                                                                                                                                                                                                                                        |
|-----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output frequen        | cy range                              | 0~599Hz                                                                                                                                                                                                                                                                                                                                                                                          |
| Frequency             | Digital setting                       | The resolution is 0.01 Hz when the frequency is set within 100 Hz;<br>The resolution is 0.1 Hz when the frequency is set at above 100 Hz.                                                                                                                                                                                                                                                        |
| resolution            | Analog setting                        | 11bit, DC 0~+5V or 4~20mA signal setting; 12bit, DC 0~+10V signal setting                                                                                                                                                                                                                                                                                                                        |
| Output                | Digital setting                       | Maximum target frequency±0.01%.                                                                                                                                                                                                                                                                                                                                                                  |
| frequency<br>accuracy | Analog setting                        | Maximum target frequency±0.1%.                                                                                                                                                                                                                                                                                                                                                                   |
| Speed control ra      | ange                                  | IM: When SVC, 1:200 , PM: When SVC,1:20.                                                                                                                                                                                                                                                                                                                                                         |
| Start torque          |                                       | 150% 0.5Hz (SVC)。                                                                                                                                                                                                                                                                                                                                                                                |
| V/F characteristi     | cs                                    | Constant torque curve, variable torque curve, five-point curve, VF separation.                                                                                                                                                                                                                                                                                                                   |
| Acceleration / de     | celeration curve characteristics      | Linear acceleration /deceleration curve, S pattern acceleration / deceleration curve1 & 2 & 3.                                                                                                                                                                                                                                                                                                   |
| Drive motor           |                                       | Induction motor(IM), permanent magnet synchronous motor (SPM, IPM).                                                                                                                                                                                                                                                                                                                              |
| Current stall pro     | tection                               | The stall protection level can be set to 0~200%(06-01(P.22)).<br>The default value is 120%(HD) /150%(ND).                                                                                                                                                                                                                                                                                        |
| Target frequenc       | y setting                             | Keypad setting, DC 0~5V/10V signal, DC -10~+10V signal, DC 4~20 mA signal, multi- speed stage level setting, communication setting, HDI setting.                                                                                                                                                                                                                                                 |
| PID control           |                                       | Please refer to SF3 user manual.                                                                                                                                                                                                                                                                                                                                                                 |
| Built-in simple P     | LC                                    | Supports 21 basic instructions and 14 application instructions, including PC editing software please refer to manual at build-in PLC chapter.                                                                                                                                                                                                                                                    |
| Keypad                | Operation monitoring                  | Output frequency, output current, output voltage, PN voltage, output torque, electronic thermal accumulation rate, temperature rising accumulation rate, output power, analog value input signal, external terminal status…; at most 12 groups of alarm records, the last group of alarm message is recorded.                                                                                    |
|                       | LED indicator (8)                     | Forward rotation indicator, reverse rotation indicator, frequency monitoring indicator, voltage monitoring indicator, current monitoring indicator, mode switch indicator, PU control indicator and external terminal control indicator.                                                                                                                                                         |
| Communication         | -                                     | RS-485 communication, can select Shihlin/Modbus communication protocol, communication speed up to 115200bps, CANOpen protocol (with optional CP301 expanded board).                                                                                                                                                                                                                              |
| Protection mech       | nanism / alarm function               | Output short circuit protection, over-current protection, over-voltage protection,<br>under-voltage protection, motor over-heat protection (06-00(P.9)), IGBT module over-heat<br>protection, communication abnormality protection, PTC temperature protection<br>etc. capacitor overheat, input and output phase loss, to-earth(ground) current leakage<br>protection, circuit error detection… |
|                       | Ambient temperature                   | -10 ~ +40°C (non-freezing)                                                                                                                                                                                                                                                                                                                                                                       |
|                       | Ambient humidity                      | Below 90%Rh (non-condensing).                                                                                                                                                                                                                                                                                                                                                                    |
|                       | Storage temperature                   | -20 ~ +65°C <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                         |
|                       | Surrounding environment               | Indoor, no corrosive gas, no flammable gas, no flammable dust.                                                                                                                                                                                                                                                                                                                                   |
| Environment           | Altitude                              | Altitude below 2000. When altitude is above 1000, derate the rated current 2% per 100m.                                                                                                                                                                                                                                                                                                          |
|                       | Vibration                             | Vibration below 5.9m/s² (0.6G).                                                                                                                                                                                                                                                                                                                                                                  |
|                       | Grade of protection                   | IP20 for frames A, B and C, IP00 for frame D and above (IP20 accessories is optional)                                                                                                                                                                                                                                                                                                            |
|                       | The degree of environmental pollution | 2                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | Class of protection                   | Class I                                                                                                                                                                                                                                                                                                                                                                                          |
| International ce      | rtification                           | CE                                                                                                                                                                                                                                                                                                                                                                                               |

# SF3 series

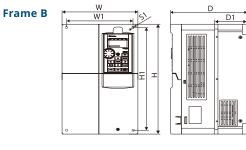
Communication Vector Control Inverter

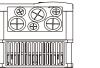
# Wiring Diagram



#### NOTE

1. Braking resistor wiring method between +/P and PR is only for frame A, B and C. For frame D, E, G and H, the braking resistor is connect between (+/ P)-(-N).

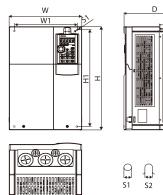

2. DC reactor can be added between +/P and P1. When DC reactor is not in used, short those terminals.


3. When adding DC reactor, the jumper between +/P and P1 must be removed.



# Dimensions

| Frame A                                  |           |            |           |            |           |            |            |            |
|------------------------------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|
| Model type                               | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| SF3-043-5.5K/3.7KG<br>SF3-043-7.5K/5.5KG | 130.0     | 116.0      | 250.0     | 236.0      | 170.0     | 51.3       | 6.2        | 6.2        |

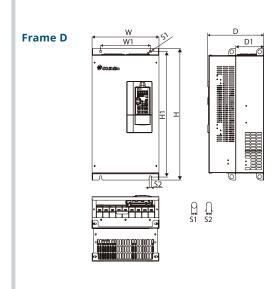





S1 S2

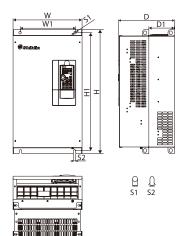
| Frame B                       |       |       |       |       |       |      |      |     |
|-------------------------------|-------|-------|-------|-------|-------|------|------|-----|
| Model type                    | W     | W1    | H     | H1    | D     | D1   | S1   | S2  |
| SF3-043-11K/7.5KG             | (mm)  | (mm)  | (mm)  | (mm)  | (mm)  | (mm) | (mm) | (mm |
| SF3-043-15K/11KG              | 190.0 | 173.0 | 320.0 | 303.0 | 190.0 | 80.5 | 8.5  | 8.5 |
| S F 3 - 0 4 3 -<br>18.5K/15KG | 190.0 | 175.0 | 520.0 | 505.0 | 190.0 | 00.5 | 0.0  | 0.5 |

Frame C



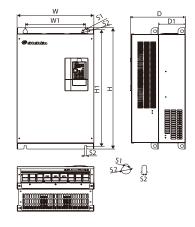

| Frame C                                                                                   |           |            |           |            |           |            |            |            |
|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|
| Model type                                                                                | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| S F 3 - 0 4 3 -<br>22K/18.5KG<br>SF3-043-30K/22KG<br>SF3-043-37K/30KG<br>SF3-043-45K/37KG | 250.0     | 231.0      | 400.0     | 381.0      | 210.0     | 89.5       | 8.5        | 8.5        |

Unit : mm


# SF3 series Communication Vector Control Inverter

# Dimensions

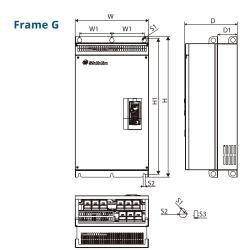



| Frame D          |           |            |           |            |           |            |            |            |
|------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|
| Model type       | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| SF3-043-55K/45KG |           |            |           |            |           |            |            |            |
| SF3-043-75K/55KG | 330.0     | 245.0      | 550.0     | 525.0      | 275.0     | 137.5      | 11.0       | 11.0       |
| SF3-043-90K/75KG |           |            |           |            |           |            |            |            |

Frame E

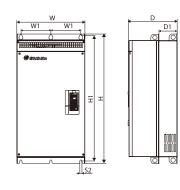


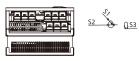
| Frame E                |           |            |           |            |           |            |            |            |
|------------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|
|                        |           |            |           |            |           |            |            |            |
| Model type             | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| SF3-043-110K/90KG      |           |            |           |            |           |            |            |            |
| SF3-043-<br>132K/110KG | 370.0     | 295.0      | 589.0     | 560.0      | 300.0     | 137.5      | 11.0       | 11.0       |


Frame F



| Frame F                |           |            |           |            |           |            |            |            |            |
|------------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------|
| Model type             | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) | S3<br>(mm) |
| SF3-043-<br>160K/132KG | 420.0     | 330.0      | 800.0     | 770.0      | 200.0     | 145 5      | 12.0       | 25.0       | 13.0       |
| SF3-043-<br>185K/160KG | 420.0     | 330.0      | 800.0     | 770.0      | 300.0     | 145.5      | 13.0       | 25.0       | 13.0       |

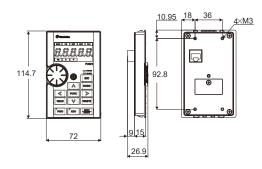




# Dimensions



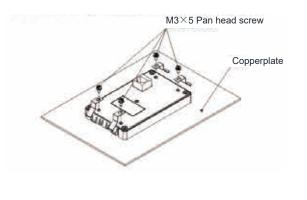
| Frame G                |           |            |           |            |           |            |            |            |            |
|------------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------|
| Model type             | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) | S3<br>(mm) |
| SF3-043-<br>220K/185KG |           |            |           |            |           |            |            |            |            |
| SF3-043-<br>250K/220KG | 500.0     | 180.0      | 870.0     | 850.0      | 360.0     | 150.0      | 13.0       | 25.0       | 13.0       |
| SF3-043-<br>280K/250KG |           |            |           |            |           |            |            |            |            |

## Frame H






| Frame H                |           |            |           |            |           |            |            |            |            |
|------------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------|
|                        |           |            |           |            |           |            |            |            |            |
| Model type             | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) | S3<br>(mm) |
| SF3-043-<br>315K/280KG | 600.0     | 230.0      | 1000.0    | 000 0      | 100.0     | 101 E      | 12.0       | 25.0       | 13.0       |
| SF3-043-<br>355K/315KG | 0.00.0    | 230.0      | 1000.0    | 960.0      | 400.0     | 101.5      | 13.0       | 23.0       | 13.0       |


## **Keypad Dimensions**

PU301 > PU301C



# Flat Spring Installation

SMK301 (PU301. PU301C Mounting kit)

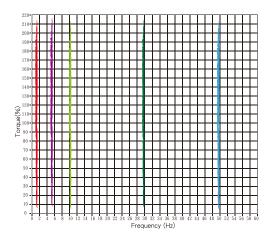




Advanced Closed Loop Communication Inverter

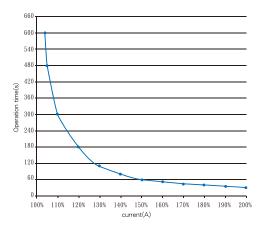





# **Product Range**

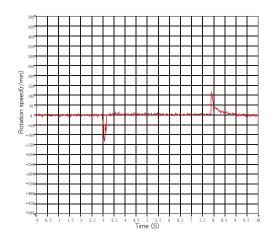
| M   | odel |         | W<br>IP)          | 0.75<br>(1) | 1.5<br>(2) | 2.2<br>(3) | 3.7<br>(5) | 5.5<br>(7.5) | 7.5<br>(10) | 11<br>(15) | 15<br>(20) | 18.5<br>(25) | 22<br>(30) | 30<br>(40) | 37<br>(50) | 45<br>(60) | 55<br>(75) | 75<br>(100) | 90<br>(120) | 110<br>(150) | 132<br>(175) | 160<br>(215) | 185<br>(250) | 220<br>(300) | 250<br>(335) | 280<br>(375) | 315<br>(420) | 355<br>(475) |
|-----|------|---------|-------------------|-------------|------------|------------|------------|--------------|-------------|------------|------------|--------------|------------|------------|------------|------------|------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|     | SA3- | 3 phase | 150%60s<br>200%3s | ٩           | <b>\</b>   | <b>\</b>   | ٩          | ٩            | ٩           | <b>\</b>   | ٩          | ٩            | ٩          | ٩          | •          | ٩          | ٩          | ٩           |             | ٩            |              |              |              |              |              |              |              |              |
| 642 | 023  | 220V    | 120%60s           |             |            |            |            |              |             |            |            |              |            |            |            |            |            |             |             |              |              |              |              |              |              |              |              |              |
| SA3 |      | 3 phase | 150%60s<br>200%3s | ٩           | 1          | 1          | 1          | ٩            | ٩           | 1          | ١          | •            | ١          | •          | ١          |            | ٩          |             |             | ٩            |              |              | ٩            | ١            |              |              |              |              |
|     | 043  | 440V    | 120%60s           |             | <i>\</i>   |            | <i>\</i>   | <i>\</i>     | <i>\</i>    |            |            | <i>\</i>     |            | <i>\</i>   |            | <b>`</b>   |            | <b>`</b>    | <i>\</i>    |              |              | <i>\</i>     |              | <i>\</i>     | <i>\</i>     | <b>`</b>     |              |              |

# **Product Features**


#### High Performance Vector Control Technology

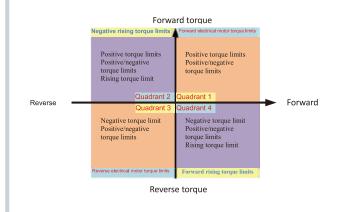
- Vector control and Sensorless vector control.
- High starting torque: Sensorless vector control (SVC)150% 0.3Hz, and closed-loop vector control(FOC + PG) 180% 0Hz.




#### **Excellent Overload Endurance**

• With a current overload capability of 150% for 60 seconds and 200% for 3 seconds, the setting is suitable for handling large sudden load changes applications such as tooling machinery.




#### **High Response Performance**

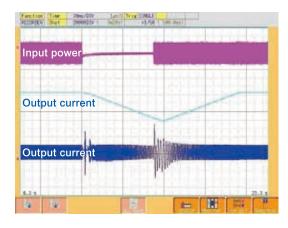
- Speed accuracy: less than 1% with 0 to 100% load variation.
- For applications with sudden load changes such as cranes and metal processing machinery.



#### 4-Quadrant Torque Control and Limits

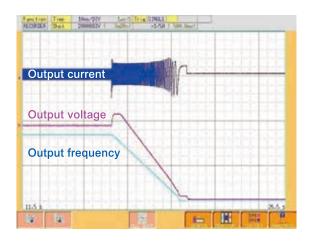
• Parameters or analog signals can be used to simply establish limits for 4 torque items.




# SA3 series

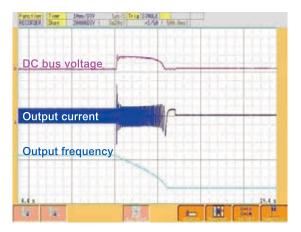
Advanced Closed Loop Communication Inverter

# **Product Features**


#### **Temporary Compensation at Low Voltage**

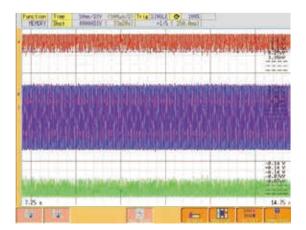
- When temporary shut-down occurs, output frequency will be controlled to maintain DC bus voltage of the inverter to decelerate the motor.
- When power resumes, inverter will control the motor to accelerate to its previous speed.
- Applicable for machines that are not able to commence free-run while decelerating.




#### **Magnetic Flux Brake**

• When the motor is stopping, the magnetic flux will be transmitted to the motor coil to shorten deceleration time without relying on regenerative resistance.




#### **Regeneration Avoidance Functions**

• By adjusting output frequency and voltage, DC bus voltage can be kept at a specified value and prevent overvoltage.



#### Low-noise Carrier Wave Control (Soft-PWM)

- Motor noise is controlled so that the metallic sound is transformed into a more pleasing buzz.
- Low noise operations to reduce the interference exerted upon external radio frequencies.





# **Product Features**

#### Advanced Synchronous Motors Control Technology

• Support both induction and permanent magnet motors with open-loop control.



#### **LCD Operation Interface**

- Support 2 display styles.
- Able to simultaneously display 6 sets of operational data.
- Calendar support.
- Offer both English and Chinese language interfaces.
- Capable of storing 3 sets of parameters.
- Support shuttle settings.

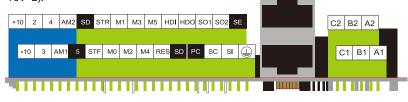


#### **Isolated Air Channel**

• Fan wind channels are sealed and isolated from the heat dissipation system and electrical parts. Dust will not be able to infiltrate the interior of the machine through the fans.

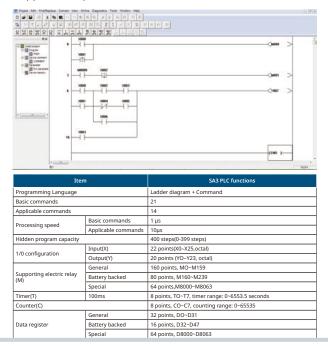


#### **Multiple Control Modes for Various Applications**


- Position / Speed / Torque / Tension control mode
- Combination mode (e.g. speed+torque) can be achieved via I/O switch.
- Advanced position control functions:
- Homing commands, zero speed, Pr/Pt mode(with optional PG cards).
- Support open-loop tension control, feeding disruption inspection and automatic spool replacement functions.



# **Product Features**


#### **Multiple I/O Terminals**

- Include 10 sets of multi-functional combinational logic input terminals (with high-speed pulse inputs \*1)
- Include 5 sets of multi-functional combinational output terminals (including electric relay output \*2, transistor output \*2, and high-speed pulse output \*1).
- Include 3 sets of analog input signals (with -10~+10V\*1 and 4~20mA/0~10V\*2).
- Include 2 sets of analog output signals (0~20mA/0~10V\*2).
- 1 set of safety switch (S1~SC).

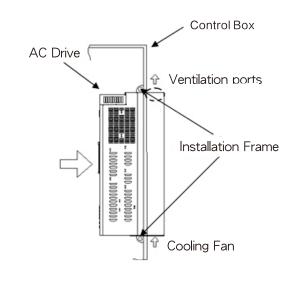


#### **Built-in PLC Functions**

Provide PLC programming software, easy for editing.
Applicable for programming small number of points, and support multiple functions.

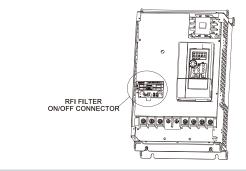


#### 12 Sets of Alarm Records


 Complete alarm system for recording the output frequency, output current, output voltage, accumulated count of temperature increase, PN voltage, total operation time, operational status, alarm output time(only when used with PU301C).

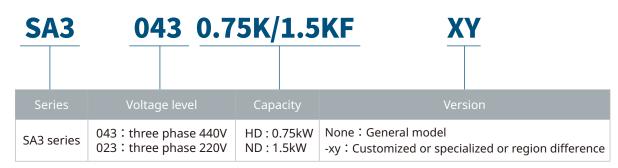
#### **Improved Protection**

•Output phase failure protection, output short circuit protection, ground leakage protection, low voltage protection, motor overheating signal (PTC), and electrolytic capacitor life inspection.


# Through-the-wall Installation Support Provided for the Entire Series

•Improve heat dissipation, reduce heat generation within the cabinet, and improve protection for the cabinet contents.




### **Built-in RFI filer**

•Reduce electromagnetic interference.





**Model Identification** 



# **Electrical Specifications**

#### 220V Three-phase Series

|        |       | Frame                      |             |               |               |               |               |               |              |             | (             |               |             | D           |             | E           |             | F           | (            |               |
|--------|-------|----------------------------|-------------|---------------|---------------|---------------|---------------|---------------|--------------|-------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|---------------|
|        |       | Model SA3-023- 🗌 -xy       | ,           | 075K<br>1.5KF | 1.5K<br>2.2KF | 2.2K<br>3.7KF | 3.7K<br>5.5KF | 5.5K<br>7.5KF | 7.5K<br>11KF | 11K<br>15KF | 15K<br>18.5KF | 18.5K<br>22KF | 22K<br>30KF | 30K<br>37KF | 37K<br>45KF | 45K<br>55KF | 55K<br>75KF | 75K<br>90KF | 90K<br>110KF | 110K<br>132KF |
|        |       | Rated output capacity      | y (kVA)     | 2             | 3.2           | 4.2           | 6.7           | 9.5           | 12.5         | 18.3        | 24.7          | 28.6          | 34.3        | 45.7        | 55          | 65          | 82          | 110         | 132          | 165           |
|        |       | Rated output current       | (A)         | 5             | 8             | 11            | 17.5          | 25            | 33           | 49          | 65            | 75            | 90          | 120         | 145         | 170         | 215         | 288         | 346          | 432           |
|        | HD    | Applicable motor cap       | acity (HP)  | 1             | 2             | 3             | 5             | 7.5           | 10           | 15          | 20            | 25            | 30          | 40          | 50          | 60          | 75          | 100         | 120          | 145           |
|        |       | Applicable motor cap       | acity(kW)   | 0.75          | 1.5           | 2.2           | 3.7           | 5.5           | 7.5          | 11          | 15            | 18.5          | 22          | 30          | 37          | 45          | 55          | 75          | 90           | 110           |
|        |       | Overload current rati      | ng          |               |               | 15            | 0% 60         | seco          | nds 20       | 0% 3        | secon         | ds (in        | verse       | time o      | harac       | terist      | ics)        |             |              |               |
| 0      |       | Carrier frequency (kH      | lz)         |               |               |               | 1~1           | 5kHz          |              |             |               |               |             |             |             | 1~9         | kHz         |             |              |               |
| Output |       | Rated output capacity      | y (kVA)     | 3.2           | 4.2           | 6.7           | 9.5           | 12.5          | 18.3         | 24.7        | 28.6          | 34.3          | 45.7        | 55          | 65          | 82          | 110         | 132         | 165          | 193           |
| 片      |       | Rated output curren        | t (A)       | 8             | 11            | 17.5          | 25            | 33            | 49           | 65          | 75            | 90            | 120         | 145         | 170         | 215         | 288         | 346         | 432          | 506           |
|        | ND    | Applicable motor cap       | acity (HP)  | 2             | 3             | 5             | 7.5           | 10            | 15           | 20          | 25            | 30            | 40          | 50          | 60          | 75          | 100         | 120         | 145          | 175           |
|        |       | Applicable motor cap       | acity (kW)  | 1.5           | 2.2           | 3.7           | 5.5           | 7.5           | 11           | 15          | 18.5          | 22            | 30          | 37          | 45          | 55          | 75          | 90          | 110          | 132           |
|        |       | Overload current rati      | ng          |               |               |               |               | 120%          | 60 se        | conds       | (inve         | rse tin       | ne cha      | iractei     | ristics)    | )           |             |             |              |               |
|        |       | Carrier frequency (kH      | lz)         |               |               |               | 1~1           | 5kHz          |              |             |               |               |             |             |             | 1~9         | kHz         |             |              |               |
|        | Maxi  | imum output voltage        |             |               |               |               |               |               |              | Three       | e-phas        | e 200         | -240V       |             |             |             |             |             |              |               |
|        | Rate  | d power voltage            |             |               |               |               |               |               | Three        | -phas       | e 200-        | 240V          | 50Hz        | / 60Hz      | 2           |             |             |             |              |               |
| Pov    | Powe  | er voltage permissible flu | uctuation   |               |               |               |               |               | Three        | -phas       | e 170-        | 264V          | 50Hz        | / 60Hz      | 2           |             |             |             |              |               |
| Power  | Powe  | er frequency permissible f | fluctuation |               |               |               |               | _             |              |             | ±             | 5%            |             |             |             |             |             |             |              |               |
| supply | Powe  | er source capacity (kVA    | A)          | 2.5           | 4.5           | 6.4           | 10            | 12            | 17           | 20          | 28            | 34            | 41          | 52          | 65          | 79          | 100         | 110         | 132          | 165           |
| 2<br>V |       | d input current(A)         | HD          | 6             | 12            | 16            | 20            | 28            | 35           | 52          | 72            | 83            | 93          | 124         | 143         | 180         | 250         | 300         | 380          | 450           |
|        | (Not  |                            | ND          | 12            | 16            | 20            | 28            | 35            | 52           | 72          | 83            | 93            | 124         | 142         | 180         | 250         | 300         | 380         | 450          | 520           |
|        | Cooli | ing method                 |             | Self cooling  |               |               |               |               |              |             | For           | ced a         | r cool      | ing         |             |             |             |             |              |               |
|        | Weig  | ght(kg)                    |             | 3.15          | 3.15          | 3.15          | 3.15          | 6             | 6            | 6           | 10.6          | 10.6          | 33          | 33          | 33          | 42.7        | 42.7        | 56.5        | 89.2         | 90.2          |

#### Note1:

The value of rated input current is not only affected by the power transformer, input reactor and wiring conditions but also fluctuates with the impedance on the power side.

Note:

The test conditions of rated output current, rated output capacity and inverter power consumption are:the carrier frequency (P.72) is at the set value; the inverter output voltage is at 220V; the output frequency is at 60Hz, and the ambient temperature is 40°C.

# SA3 series

# Advanced Closed Loop Communication Inverter

# **Electrical Specifications**

#### 440 V Three-phase Series

|              | -                   | Frame                                          |           |                |             | A            |               |                   |                                       | В             |               |               | C             |               | D             |
|--------------|---------------------|------------------------------------------------|-----------|----------------|-------------|--------------|---------------|-------------------|---------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
|              |                     | Model SA3-043                                  |           | 0.75K<br>1.5KF | 1.5K        | 2.2K         | 3.7K<br>5.5KF | 5.5K<br>7.5KF     | 7.5K<br>11KF                          | 11K           | 15K           | 18.5K<br>22KF | 22K           | 30K           | 37K           |
| $\vdash$     |                     | Rated output capacity                          | (1/4)     | 1.5KF<br>2     | 2.2KF<br>3  | 3.7KF<br>4.6 | 5.5KF<br>6.9  | 7.5K⊦<br>10       | 11KF<br>14                            | 15KF<br>18    | 18.5KF<br>25  | 22KF<br>29    | 30KF<br>34    | 37KF<br>46    | 45KF<br>56    |
|              |                     | Rated output current (/                        | . ,       | 3.0            | 4.2         | 4.0          | 9             | 10                | 14                                    | 24            | 32            | 38            | 45            | 60            | 73            |
|              |                     | Applicable motor capa                          |           | 1              | 2           | 3            | 5             | 7.5               | 10                                    | 15            | 20            | 25            | 30            | 40            | 50            |
|              | HD                  | Applicable motor capa                          |           | 0.75           | 1.5         | 2.2          | 3.7           | 5.5               | 7.5                                   | 11            | 15            | 18.5          | 22            | 30            | 37            |
|              |                     | Overload current rating                        |           |                |             |              |               | s 200% 3          |                                       |               | -             |               |               |               |               |
| 0            |                     | Carrier frequency (kHz                         | -         |                |             |              |               |                   | ~15kHz                                |               |               |               | ,             |               | 1~9kHz        |
| Output       |                     | Rated output capacity                          |           | 3              | 4.6         | 6.9          | 10            | 14                | 18                                    | 25            | 29            | 34            | 46            | 56            | 69            |
| ŭ,           |                     | Rated output current                           | (A)       | 4.2            | 6           | 9            | 12            | 17                | 24                                    | 32            | 38            | 45            | 60            | 73            | 91            |
|              | ND                  | Applicable motor capa                          | city (HP) | 2              | 3           | 5            | 7.5           | 10                | 15                                    | 20            | 25            | 30            | 40            | 50            | 60            |
|              |                     | Applicable motor capa                          | city (kW) | 1.5            | 2.2         | 3.7          | 5.5           | 7.5               | 11                                    | 15            | 18.5          | 22            | 30            | 37            | 45            |
|              |                     | Overload current rating                        | g         |                |             |              | 120% 60       | ) second          | s (invers                             | e time cl     | haracteri     | stics)        |               |               |               |
|              |                     | Carrier frequency (kHz)                        | )         |                |             |              |               | 1.                | ~15kHz                                |               |               |               |               |               | 1~9kHz        |
|              |                     | kimum output voltage                           |           |                |             |              |               |                   | e-phase                               |               |               |               |               |               |               |
|              |                     | ed power voltage                               |           |                |             |              |               | ree-pha           |                                       |               |               |               |               |               |               |
| Power supply |                     | er voltage permissible flu                     |           |                |             |              | Tł            | ree-pha           |                                       |               | z / 60Hz      |               |               |               |               |
| er           |                     | er frequency permissible flu                   |           |                |             |              | 1             |                   | ±59                                   | r             |               |               |               | 1             |               |
| gup          |                     | /er source capacity (kVA)                      |           | 2.5            | 4.5         | 6.9          | 10.4          | 11.5              | 16                                    | 20            | 27            | 32            | 41            | 52            | 65            |
| ply          |                     | ed input current(A)                            | HD        | 4.0            | 5.9         | 8.7          | 14            | 17                | 20                                    | 26            | 35            | 40            | 47            | 63            | 74            |
|              | (Not                |                                                | ND        | 5.9            | 8.7         | 14           | 17            | 20                | 26                                    | 35            | 40            | 47            | 63            | 74            | 101           |
| <u> </u>     |                     | bling method                                   |           | Self cooling   | 2.45        | 2.45         | 245           | 2.45              | -                                     | ed air co     |               | 0.0           | 0.0           | 0.0           | 22            |
|              | vvei                | ight(kg)                                       |           | 3.15           | 3.15        | 3.15         | 3.15          | 3.15              | 6                                     | 6             | 6             | 9.8           | 9.8           | 9.8           | 33            |
|              |                     | Frame                                          |           |                | D           |              |               | E                 | F                                     |               |               | G             |               |               | Н             |
|              |                     | Model SA3-043- 🗆 -xy                           |           | 45K<br>55KF    | 55K<br>75KF | 75K<br>90KF  | 90K<br>110KF  | 110K<br>132KF     | 132K<br>160KF                         | 160K<br>185KF | 185K<br>220KF | 220K<br>250KF | 250K<br>280KF | 280K<br>315KF | 315K<br>355KF |
|              |                     | Rated output capacity                          | (kVA)     | 69             | 84          | 114          | 137           | 168               | 198                                   | 236           | 295           | 367           | 402           | 438           | 491           |
|              |                     | Rated output current (/                        | -         | 91             | 110         | 150          | 180           | 220               | 260                                   | 310           | 340           | 425           | 480           | 530           | 620           |
|              | HD                  | Applicable motor capa                          |           | 60             | 75          | 100          | 120           | 150               | 175                                   | 215           | 250           | 300           | 335           | 375           | 420           |
|              |                     | Applicable motor capa                          |           | 45             | 55          | 75           | 90            | 110               | 132                                   | 160           | 185           | 220           | 250           | 280           | 315           |
|              |                     | Overload current rating                        | -         |                |             | 150% 6       | 0 second      | ls 200% 3         |                                       | s (invers     | e time ch     | haracteri     | stics)        |               |               |
| Output       |                     | Carrier frequency (kHz                         |           |                |             | 1            |               | 1~9kl             | 1                                     |               | ,             | ,             | 1             |               | 5kHz          |
| tp           |                     | Rated output capacity                          |           | 84             | 114         | 137          | 168           | 198               | 236                                   | 295           | 367           | 402           | 438           | 491           | 544           |
| 17           |                     | Rated output current                           |           | 110            | 150         | 180          | 220           | 260               | 310                                   | 340           | 425           | 480           | 530           | 620           | 683           |
|              | ND                  | Applicable motor capa                          |           | 75             | 100<br>75   | 120          | 150<br>110    | 175<br>132        | 215                                   | 250<br>185    | 300           | 335           | 375           | 420           | 475           |
|              |                     | Applicable motor capa                          |           | 55             | /5          | 90           |               |                   | 160                                   |               | 220           | 250           | 280           | 315           | 355           |
|              |                     | Overload current rating                        | -         |                |             |              | 120% 60       | second 0<br>1~9kl | · · · · · · · · · · · · · · · · · · · | e ume ci      | naracteri     | SUCS)         |               | 1.6           | 5kHz          |
|              | Max                 | Carrier frequency (kHz<br>kimum output voltage | )         |                |             |              |               |                   | e-phase                               | 380-480       | )./           |               |               | 1~0           |               |
|              |                     | ed power voltage                               |           |                |             |              | Th            | ree-pha           |                                       |               |               |               |               |               |               |
| P            |                     | er voltage permissible flu                     | ctuation  |                |             |              |               | ree-pha           |                                       |               |               |               |               |               |               |
|              |                     | er frequency permissible fl                    |           |                |             |              |               | ii ee-piia.       | ±59                                   |               | 27 00112      |               |               |               |               |
| Ne I         |                     | er nequency permissione n                      |           | 79             | 100         | 110          | 137           | 165               | 198                                   | 247           | 295           | 367           | 402           | 438           | 491           |
| ver st       |                     | er source capacity (kVA)                       |           |                |             |              |               |                   |                                       |               |               |               |               |               |               |
| ver supp     | Pow                 | ver source capacity (kVA)                      |           |                | 114         | 157          | 167           | 207               | 240                                   | 300           | 380           | 400           | 500           | 550           | 650 1         |
| Power supply | Pow                 | ed input current(A)                            | HD<br>ND  | 101            | 114<br>157  | 157<br>167   | 167<br>207    | 207<br>240        | 240<br>300                            | 300<br>380    | 380<br>400    | 400<br>500    | 500<br>550    | 550<br>650    | 650<br>700    |
| ver supply   | Pow<br>Rate<br>(Not | ed input current(A)                            | HD        |                |             |              |               |                   | 300                                   |               | 400           | 1             |               |               |               |

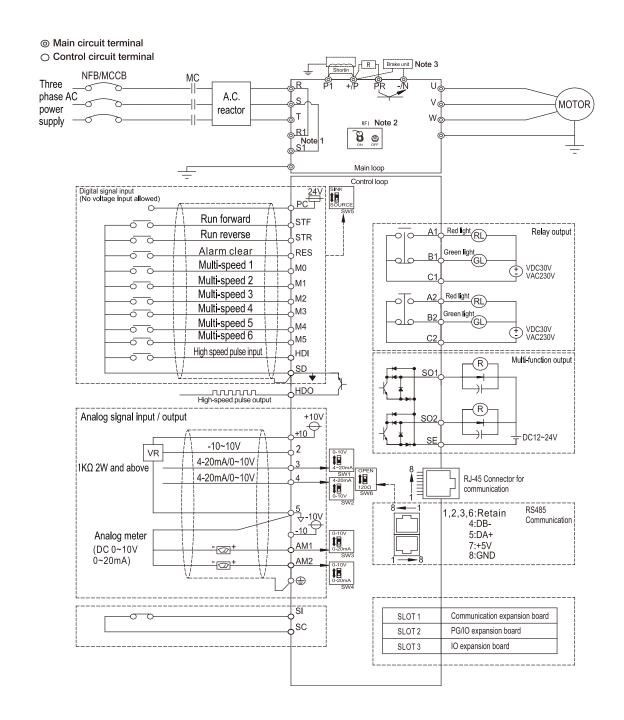
#### Note1:

The value of rated input current is not only affected by the power transformer, input reactor and wiring conditions but also fluctuates with the impedance on the power side.

#### Note:

The test conditions of rated output current, rated output capacity and inverter power consumption are:the carrier frequency (P.72) is at the set value; the inverter output voltage is at 220V; the output frequency is at 60Hz, and the ambient temperature is 40°C.




# Common Specifications

| Control method                  |                                       | SVPWM control, V/F control, close-loop V/F control (VF+PG), general flux vector control, sensorless vector control (SVC), close-loop vector control (FOC+PG), torque control (TQC+PG).                                                                                                                                                                                                                                                                                                |
|---------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output frequence                | y range                               | 0~599.00Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | Digital setting                       | The resolution is 0.01Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Frequency<br>setting resolution | Analog setting                        | 0.01Hz/60Hz (terminal 2: $-10 \sim +10V / 13bit$ )<br>0.015Hz/60Hz (terminal 2: $0 \sim \pm 10V / 12bit$ ; terminal 3: $0 \sim 10V$ , 4-20mA / 12bit)<br>0.03Hz/60Hz (terminal 2, 3; $0 \sim 5V / 11bit$ )<br>0.06Hz/60Hz (terminal 4: $0 \sim 10V$ , 4-20mA /10bit)<br>0.12Hz/60Hz (terminal 4: $0 \sim 5V / 9bit$ )                                                                                                                                                                 |
| Output frequency                | Digital setting                       | Maximum target frequency $\pm$ 0.01%.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| accuracy                        | Analog setting                        | Maximum target frequency $\pm$ 0.1%.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Speed control ra                | nge                                   | IM: When SVC, 1:200; when FOC+PG, 1:1000.<br>PM: When SVC, 1:20; when FOC+PG, 1:1000.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Start torque                    |                                       | 150% 0.3Hz (SVC), 180% 0Hz (FOC+PG).                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V/F characteristic              | CS                                    | Constant torque curve, variable torque curve, five-point curve, VF separation                                                                                                                                                                                                                                                                                                                                                                                                         |
| Acceleration / de               | celeration curve characteristics      | Linear acceleration / deceleration curve, S shape acceleration / deceleration curve1 & 2 & 3 $$                                                                                                                                                                                                                                                                                                                                                                                       |
| Drive motor                     |                                       | Induction motor (IM), permanent magnet motor(SPM, IPM)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stalling protection             | on                                    | The stalling protection level can be set to 0~400% (06-01(P.22)). The default value is 150%.                                                                                                                                                                                                                                                                                                                                                                                          |
| Target frequency                | / setting                             | Keypad setting, DC 0~5V/10V signal, DC -10~+10V signal, DC 4~20 mA signal, multi-<br>speed stage level setting, communication setting, HDI setting.                                                                                                                                                                                                                                                                                                                                   |
| PID control                     |                                       | Please refer to 08-00~08-01 \ 08-04~08-14 / P.170~P.182 in chapter 4.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Built-in simple Pl              | LC                                    | Supports 21 basic instructions and 14 application instructions, including PC editing software;                                                                                                                                                                                                                                                                                                                                                                                        |
| Keypad                          | Operation monitoring                  | Output frequency, output current, output voltage, PN voltage, output torque, electronic thermal accumulation rate, temperature rising accumulation rate, output power, analog value input signal, digital input and output terminal status…; alarm history 12 groups at most, the last group of alarm message is recorded.                                                                                                                                                            |
|                                 | LED indicator (10)                    | Forward rotation indicator, reverse rotation indicator, frequency monitoring indicator, voltage monitoring indicator, current monitoring dedicator, NET dedicator, PU control indicator, EXT indicator, PLC indicator and MON monitoring indicator.                                                                                                                                                                                                                                   |
| Communication                   | function                              | RS-485 communication, can select Shihlin/Modbus communication protocol, communication speed up to 115200bps, built-in CanOpen protocol (with CP301 expansion card), double RJ-45 connectors (the connector can also be connected to keypad)                                                                                                                                                                                                                                           |
| Protection mech                 | anism / alarm function                | Output short circuit protection, Over-current protection, over-voltage protection, under-<br>voltage protection, motor over-heat protection (06-00(P.9)), IGBT module over-heat<br>protection, communication abnormality protection, PTC temperature protection etc,<br>electrolytic capacitor overheat, input and output phase failure, to-earth (ground) leakage<br>currents protection, circuit error detection…                                                                   |
|                                 | Ambient temperature                   | Heavy duty : -10 ~ +50°C (non-freezing), Light duty : -10 ~ +40°C (non-freezing), please refer to 3.4.5 Class of protection and operation temperature for details.                                                                                                                                                                                                                                                                                                                    |
|                                 | Ambient humidity                      | Below 90%Rh (non-condensing).                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | Storage temperature                   | -20 ~ +65°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | Surrounding environment               | Indoor, no corrosive gas, no flammable gas, no flammable dust.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Environment                     | Altitude                              | Altitude below 3000 meters, when altitude is above 1,000 m, derate the rated current 2% per 100 m<br>Note 1: According to the safety regulation EN61800-5-1, which is required to declare in CE<br>certification, this series of inverters can be installed in an environment of over-voltage class II when<br>the altitude is less than 3000m. When the altitude is less than 2000m, can be installed in harsher<br>conditions that meet the requirements of over-voltage class III. |
|                                 | Vibration                             | Vibration below 5.9m/s <sup>2</sup> (0.6G)                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | Grade of protection                   | Frame A, B, C, IP20 / NEMA TYPE 1, Frame D and above IP00 / UL OPEN TYPE (optional IP20 accessories can be added).                                                                                                                                                                                                                                                                                                                                                                    |
|                                 | The degree of environmental pollution | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 | Class of protection                   | Class I                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 | tification                            | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

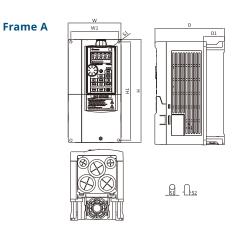
# SA3 series

Advanced Closed Loop Communication Inverter

# **Wiring Diagram**

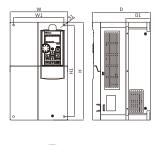


#### NOTE


1.R1 S1 terminal is only for frame D~H.

2.The connection of braking resistor between +/P and PR is only for frame A, B and C. For frame D and above,

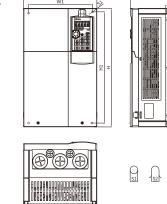
please connect a braking unit between +/P and –N. 3.The DC reactor between + / P and P1 is optional, please short + / P and P1 when DC reactor is not used.




# Dimensions



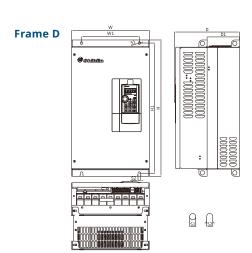
| Frame A             |           |            |           |            |           |            |            |            |
|---------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|
|                     |           |            |           |            |           |            |            |            |
| Model type          | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| SA3-043-0.75K/1.5KF |           |            |           |            |           |            |            |            |
| SA3-043-1.5K/2.2KF  |           |            |           |            |           |            |            |            |
| SA3-043-2.2K/3.7KF  |           |            |           |            |           |            |            |            |
| SA3-043-3.7K/5.5KF  | ]         |            |           |            |           |            |            |            |
| SA3-043-5.5K/7.5KF  | 130.0     | 116.0      | 250.0     | 236.0      | 170.0     | 51.3       | 6.2        | 6.2        |
| SA3-023-0.75K/1.5KF |           |            |           |            |           |            |            |            |
| SA3-023-1.5K/2.2KF  |           |            |           |            |           |            |            |            |
| SA3-023-2.2K/3.7KF  |           |            |           |            |           |            |            |            |
| SA3-023-3.7K/5.5KF  |           |            |           |            |           |            |            |            |


### Frame B

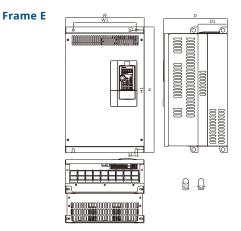




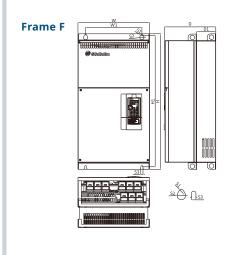
| Frame B            |       |       |       |       |       |      |      | ĺ    |
|--------------------|-------|-------|-------|-------|-------|------|------|------|
| Model type         | W     | W1    | , H   | H1    | D     | D1   | S1   | S2   |
|                    | (mm)  | (mm)  | (mm)  | (mm)  | (mm)  | (mm) | (mm) | (mm) |
| SA3-043-7.5K/11KF  |       |       |       |       |       |      |      |      |
| SA3-043-11K/15KF   |       | 173.0 | 320.0 | 303.0 |       |      |      |      |
| SA3-043-15K/18.5KF | 190.0 |       |       |       | 190.0 | 80.5 | 8.5  | 8.5  |
| SA3-023-5.5K/7.5KF | 190.0 |       |       |       | 190.0 | 80.5 | 0.5  | 0.5  |
| SA3-023-7.5K/11KF  | ]     |       |       |       |       |      |      |      |
| SA3-023-11K/15KF   | ]     |       |       |       |       |      |      |      |


Frame C




| Frame C            |           |            |           |            |           |            |            |            |
|--------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|
| Model type         | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| SA3-043-18.5K/22KF |           |            |           |            |           |            |            |            |
| SA3-043-22K/30KF   | 1         |            |           |            |           |            |            |            |
| SA3-043-30K/37KF   | 250.0     | 231.0      | 400.0     | 381.0      | 210.0     | 89.5       | 8.5        | 8.5        |
| SA3-023-15K/18.5KF |           |            |           |            |           |            |            |            |
| SA3-023-18.5K/22KF |           |            |           |            |           |            |            |            |

# SA3 series Advanced Closed Loop Communication Inverter


# Dimensions



| Frame D          |           |            |           |            |           |            |            |            |
|------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|
| Model type       | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| SA3-043-37K/45KF |           |            |           |            |           |            |            |            |
| SA3-043-45K/55KF |           |            |           |            |           |            |            |            |
| SA3-043-55K/75KF |           |            |           |            |           |            |            |            |
| SA3-043-75K/90KF | 330.0     | 245.0      | 550.0     | 525.0      | 275.0     | 137.5      | 11.0       | 11.0       |
| SA3-023-22K/30KF |           |            |           |            |           |            |            |            |
| SA3-023-30K/37KF |           |            |           |            |           |            |            |            |
| SA3-023-37K/45KF |           |            |           |            |           |            |            |            |



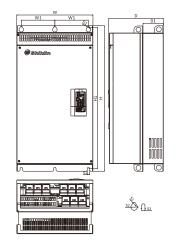
| Frame E            |       |       |           |            |           |            |            |            |
|--------------------|-------|-------|-----------|------------|-----------|------------|------------|------------|
|                    | W     | W1    | Н         | 114        | D         | D1         | 64         | 62         |
| Model type         | (mm)  | (mm)  | н<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) |
| SA3-043-90K/110KF  |       | 295.0 | 589.0     |            |           |            |            |            |
| SA3-043-110K/132KF | 370.0 |       |           | 560.0      | 300.0     | 137.5      | 11.0       | 11.0       |
| SA3-023-45K/55KF   | 370.0 |       |           |            | 500.0     | 157.5      | 11.0       | 11.0       |
| SA3-023-55K/75KF   |       |       |           |            |           |            |            |            |



| Frame F            |           |            |           |            |           |            |            |            |            |
|--------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------|
| Model type         | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) | S3<br>(mm) |
| SA3-043-132K/160KF | 120.0     | 340.0      | 000 0     | 770.0      | 200.0     | 145 5      | 12.0       | 25.0       | 12.0       |
| SA3-023-75K/90KF   | 420.0     | 540.0      | 800.0     | //0.0      | 500.0     | 145.5      | 15.0       | 25.0       | 15.0       |



# Dimensions


# 

# Frame G

| Model type         | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | D1<br>(mm) | S1<br>(mm) | S2<br>(mm) | S3<br>(mm) |
|--------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------|
| SA3-043-160K/185KF |           |            |           |            |           |            |            |            |            |
| SA3-043-185K/220KF | ]         |            |           |            |           |            |            |            |            |
| SA3-043-220K/250KF | 500 0     | 100.0      | 870.0     | 050.0      | 260.0     | 150.0      | 12.0       | 25.0       | 13.0       |
| SA3-043-250K/280KF | 300.0     | 180.0      | 870.0     | 830.0      | 500.0     | 130.0      | 15.0       | 25.0       | 15.0       |
| SA3-023-90K/110KF  | ]         |            |           |            |           |            |            |            |            |
| SA3-023-110K/132KF | ]         |            |           |            |           |            |            |            |            |

## Frame H

Frame G



| Frame H            |             |        |       |       |       |      |      |      |    |
|--------------------|-------------|--------|-------|-------|-------|------|------|------|----|
| Model type         | W<br>(mm)   | W1     | H     | H1    | D     | D1   | S1   | S2   | S3 |
| SA3-043-280K/315KF |             |        |       |       |       |      |      |      |    |
| SA3-043-315K/355KF | 600.0 230.0 | 1000.0 | 980.0 | 400.0 | 181.5 | 13.0 | 25.0 | 13.0 |    |

Unit : mm

# **Optional Accessory**

# Expansion Card - SF3 / SE3 / SA3 Series

#### PD302

Profibus communication expansion card



### EP301





### EC301-

EtherCAT communication expansion card SA3:A3, SE3:E3, SF3:F3



## PG302L (SE3/SA3 Only)

Encoder feedback card (supports Resolver signal)



#### DN301

DeviceNet communication expansion card



**EB362R** I/O expansion card



## PG301C (SE3/SA3 Only)

Encoder feedback card (supports open collector type output)



### CMK301 (SE3 Only)

For installing expansion card on SE3



# CP301

CANopen communication expansion card



#### **EB308**R

I/O expansion card



#### PG301L (SE3/SA3 Only)

Encoder feedback card (supports differential type output)



# **Optional Accessory**

# Keypad

## PU301 (SL3/SC3/SE3/SF3/SA3)



DU06 (SL3/SC3/SS2)



### PU301C(SA3/SF3)



## PU302(SE3)



## DU10(SS2/SC3)



## DU08S (SL3/SC3/SS2)

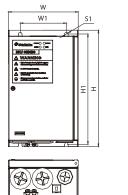


# Others



# Model Identification




| BKU        | 040 45K       |          | XY                                        |  |  |
|------------|---------------|----------|-------------------------------------------|--|--|
|            |               |          |                                           |  |  |
| Series     | Voltage level | Capacity | Version                                   |  |  |
|            |               | 37kW     |                                           |  |  |
| DIGULARIA  | -040 : 400V   | 45kW     | None : General model                      |  |  |
| BKU series | -020: 200V    | 110kW    | -xy : Customized or specialized or region |  |  |
|            |               | 160kW    | difference                                |  |  |

## Feature

Durable appearance , IGBT modularized, great cooling, single and multi use. wiring friendly, can be used in variety brand of VFD

D

# Dimension



|             |           |            |           |            | Un        | it : mm    |
|-------------|-----------|------------|-----------|------------|-----------|------------|
| Frame A     |           |            |           |            |           |            |
| Model type  | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | S1<br>(mm) |
| BKU-020-37K | 121       | 80         | 200       | 189.5      | 130       | 6.4        |
| BKU-040-45K |           | 00         | 200       | 109.5      | 130       | 0.4        |

| Frame B      |           |            |           |            |           |            |
|--------------|-----------|------------|-----------|------------|-----------|------------|
|              |           |            |           |            |           |            |
| Model type   | W<br>(mm) | W1<br>(mm) | H<br>(mm) | H1<br>(mm) | D<br>(mm) | S1<br>(mm) |
| BKU-020-110K | 222 E     | 102 E      | 242       | 329        | 100       | 6.4        |
| BKU-040-160K | 255.5     | 195.5      | 545       | 529        | 190       | 0.4        |

# Braking Unit & Braking Resistor Application Table

| Voltario | Motor  | Equivalent Braking | Braking Uni  | t    | Braking Resistor (20%ED, 125% Bra | king torque) |
|----------|--------|--------------------|--------------|------|-----------------------------------|--------------|
| Voltage  | Rating | Resistor           | Model        | Unit | Specification                     | Unit         |
|          | 22kW   | 10800W 6.8Ω        | BKU-020-37K  | 1    | 1200W 6.8R                        | 9            |
|          | 30kW   | 13500W 5Ω          | BKU-020-37K  | 1    | 1500W 5R                          | 9            |
|          | 37kW   | 21600W 4Ω          | BKU-020-37K  | 1    | 1200W 8R                          | 18           |
| 200V     | 45kW   | 21600W 3.4Ω        | BKU-020-37K  | 2    | 1200W 6.8R                        | 18           |
| 2000     | 55kW   | 27000W 2.5Ω        | BKU-020-37K  | 2    | 1500W 5R                          | 18           |
|          | 75kW   | 19200W 2Ω          | BKU-020-37K  | 2    | 1200W 8R                          | 16           |
|          | 90kW   | 25000W 2R          | BKU-020-110K | 1    | 1000W 50R                         | 25           |
|          | 110kW  | 24000W 1.6R        | BKU-020-110K | 1    | 1200W 8R                          | 20           |
|          | 37kW   | 21600W 16Ω         | BKU-040-45K  | 1    | 1200W 8R                          | 18           |
|          | 45kW   | 21600W 13.6Ω       | BKU-040-45K  | 1    | 1200W 6.8R                        | 18           |
|          | 55kW   | 20000W 10Ω         | BKU-040-45K  | 2    | 1000W 50R                         | 20           |
|          | 75kW   | 43200W 6.8Ω        | BKU-040-45K  | 2    | 1200W 6.8R                        | 36           |
|          | 90kW   | 43200W 6.8Ω        | BKU-040-45K  | 2    | 1200W 6.8R                        | 36           |
|          | 110kW  | 36000W 5.6Ω        | BKU-040-45K  | 3    | 1000W 50R                         | 36           |
| 400V     | 132kW  | 54000W 4.4Ω        | BKU-040-45K  | 3    | 1200W 8R                          | 45           |
| 400 V    | 160kW  | 38400W 4Ω          | BKU-040-160K | 1    | 1200W 8R                          | 32           |
|          | 185kW  | 38400W 3.4Ω        | BKU-040-160K | 2    | 1200W 6.8R                        | 32           |
|          | 220kW  | 57600W 2.7Ω        | BKU-040-160K | 2    | 1200W 8R                          | 48           |
|          | 250kW  | 48000W 2.5Ω        | BKU-040-160K | 2    | 1500W 5R                          | 32           |
|          | 280kW  | 67200W 2.3Ω        | BKU-040-160K | 2    | 1200W 8R                          | 56           |
|          | 315kW  | 67200W 1.9Ω        | BKU-040-160K | 2    | 1200W 6.8R                        | 56           |
|          | 355kW  | 72000W 1.7Ω        | BKU-040-160K | 3    | 1500W 5R                          | 48           |

Note: If an adjustment of ED percentage is needed, please refer to the user manual for the connections of resistors.

# SHIHLIN ELECTRIC & ENGINEERING

Transmission & Distribution, Electrical Products, Power Control, Switches & Breaker, Factory Automation, Automotive Electrical Components



#### Factory Automation Overseas Sales Division

3F, No.9, Sec. 1, Chang-an E. Rd., Zhongshan Dist., Taipei City 10441, Taiwan T. +886-2-2541-9822 F. +886-2-2581-2665 e-mail: automation@seec.com.tw http://automation.seec.com.tw

Headquarters

16F, No.88, Sec. 6, Zhongshan N. Rd., Shilin Dist., Taipei City 11155, Taiwan T. +886-2-2834-2662 F. +886-2-2836-6187 http://www.seec.com.tw

| Distributor |  |  |
|-------------|--|--|

B221104E.INV-BO3